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Abstract. We study the problem of formalizing and checking proba-
bilistic hyperproperties for models that allow nondeterminism in actions.
We extend the temporal logic HyperPCTL, which has been previously in-
troduced for discrete-time Markov chains, to enable the specification of
hyperproperties also for Markov decision processes. We generalize Hyper-
PCTL by allowing explicit and simultaneous quantification over sched-
ulers and probabilistic computation trees and show that it can express
important quantitative requirements in security and privacy. We show
that HyperPCTL model checking over MDPs is in general undecidable for
quantification over probabilistic schedulers with memory, but restricting
the domain to memoryless non-probabilistic schedulers turns the model
checking problem decidable. Subsequently, we propose an SMT-based
encoding for model checking this language and evaluate its performance.

1 Introduction

Hyperproperties [1] extend the conventional notion of trace properties [2] from a
set of traces to a set of sets of traces. In other words, a hyperproperty stipulates a
system property and not the property of just individual traces. It has been shown
that many interesting requirements in computing systems are hyperproperties
and cannot be expressed by trace properties. Examples include (1) a wide range
of information-flow security policies such as noninterference [3] and observational
determinism [4], (2) sensitivity and robustness requirements in cyber-physical
systems [5], and consistency conditions such as linearizability in concurrent data
structures [6].

Hyperproperties can describe the requirements of probabilistic systems as
well. They generally express probabilistic relations between multiple executions
of a system. For example, in information-flow security, adding probabilities is mo-
tivated by establishing a connection between information theory and information
flow across multiple traces. A prominent example is probabilistic schedulers that
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open up an opportunity for an attacker to set up a probabilistic covert channel.
Or, probabilistic causation compares the probability of occurrence of an effect
between scenarios where the cause is or is not present.
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Fig. 1: Example DTMC.

The state of the art on probabilistic hyperprop-
erties has exclusively been studied in the context
of discrete-time Markov chains (DTMCs). In [7],
we proposed the temporal logic HyperPCTL, which
extends PCTL by allowing explicit and simultane-
ous quantification over computation trees. For ex-
ample, the DTMC in Fig. 1 satisfies the following
HyperPCTL formula:

ψ = ∀ŝ.∀ŝ′.
(

initŝ ∧ initŝ′
)

⇒
(

P( aŝ) = P( aŝ′)
)

(1)

which means that the probability of reaching proposition a from any pair of
states ŝ and ŝ′ labeled by init should be equal. Other works on probabilistic
hyperproperties for DTMCs include parameter synthesis [8] and statistical model
checking [5, 9].
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Fig. 2: Example MDP.

An important gap in the spectrum is veri-
fication of probabilistic hyperproperties with
regard to models that allow nondetermin-
ism, in particular, Markov decision processes
(MDP). Nondeterminism plays a crucial role
in many probabilistic systems. For instance,
nondeterministic queries can be exploited in
order to make targeted attacks to databases
with private information [10]. To motivate
the idea, consider the MDP in Fig. 2, where
h is a high secret and l is a low publicly observable variable. To protect the se-
cret, there should be no probabilistic dependencies between observations on the
low variable l and the value of h. However, an attacker that chooses a scheduler
that always takes action α from states s0 and s1 can learn whether or not h ≤ 0
by observing the probability of obtaining l = 1 (or l = 2). On the other hand, a
scheduler that always chooses action β, does not leak any information about the
value of h. Thus, a natural question to ask is whether a certain property holds
for all or some schedulers.

s0 s1
α 1

β 1 α 1

Fig. 3: Example MDP.

With the above motivation, in this paper, we fo-
cus on probabilistic hyperproperties in the context of
MDPs. Such hyperproperties inherently need to con-
sider different nondeterministic choices in different exe-
cutions, and naturally call for quantification over sched-
ulers. There are several challenges to achieve this. In
general, there are schedulers whose reachability probabilities cannot be achieved
by any memoryless non-probabilistic scheduler, and, hence finding a scheduler is
not reducible to checking non-probabilistic memoryless schedulers, as it is done
in PCTL mode checking for MDPs. Consider for example the MDP in Fig. 3, for
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which we want to know whether there is a scheduler such that the probability to
reach s1 from s0 equals 0.5. There are two non-probabilistic memoryless sched-
ulers, one choosing action α and the other, action β in s0. The first one is the
maximal scheduler for which s1 is reached with probability 1, and the second
one is the minimal scheduler leading to probability 0. However, the probability
0.5 cannot be achieved by any non-probabilistic scheduler. Memoryless proba-
bilistic schedulers can neither achieve probability 0.5: if a memoryless scheduler
would take action α with any positive probability, then the probability to reach
s1 is always 1. The only way to achieve the reachability probability 0.5 (or any
value strictly between 0 and 1) is by a probabilistic scheduler with memory, e.g.,
taking α and β in s0 with probabilities 0.5 each when this is the first step on a
path, and β with probability 1 otherwise.

Our contributions in this paper are as follows. We first extend the tempo-
ral logic HyperPCTL [7] to the context of MDPs. To this end, we augment the
syntax and semantics of HyperPCTL to quantify over schedulers and relate prob-
abilistic computation trees for different schedulers. For example, the following
formula generalizes (1) by requiring that the respective property should hold for
all computation trees starting in any states ŝ and ŝ′ of the DMTC induced by
any scheduler σ̂:

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(

init ŝ ∧ init ŝ′
)

⇒
(

P( aŝ) = P( aŝ′)
)

On the negative side, we show that the problem to check HyperPCTL proper-
ties for MDPs is in general undecidable. On the positive side, we show that the
problem becomes decidable when we restrict the scheduler quantification domain
to memoryless non-probabilistic schedulers. We also show that this restricted
problem is already NP-complete (respectively, coNP-complete) in the size of the
given MDP for HyperPCTL formulas with a single existential (respectively, uni-
versal) scheduler quantifier. Subsequently, we propose an SMT-based encoding to
solve the restricted model checking problem. We have implemented our method
and analyze it experimentally on three case studies: probabilistic scheduling at-
tacks, side-channel timing attacks, and probabilistic conformance (available at
https://github.com/oreohere/HyperOnMDP).

It is important to note that the work in [11] (also published in ATVA’20)
independently addresses the problem under investigation in this paper. The au-
thors propose the temporal logic PHL. Similar to HyperPCTL, PHL also allows
quantification over schedulers, but path quantification of the induced DTMC is
achieved by using HyperCTL∗. Both papers show that the model checking prob-
lem is undecidable for the respective logics. The difference, however, is in our
approaches to deal with the undecidability result, which leads two complemen-
tary and orthogonal techniques. For both logics the problem is decidable for
non-probabilistic memoryless schedulers. We provide an SMT-based verification
procedure for HyperPCTL for this class of schedulers. The work in [11] presents
two methods for proving and for refuting formulas from a fragment of PHL for
general memoryful schedulers. The two papers offer disjoint case studies for eval-
uation.

https://github.com/oreohere/HyperOnMDP
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Organization. Preliminary concepts are discussed in Section 2. We present the
syntax and semantics of HyperPCTL for MDPs and discuss its expressive power
in Section 3. Section 4 is dedicated to the applications of HyperPCTL. Sections 5
and 6 present our results on memoryless non-probabilistic schedulers and their
evaluation before concluding in Section 7. All proofs are given in the Appendix.

2 Preliminaries

2.1 Discrete-time Markov models

Definition 1. A discrete-time Markov chain (DTMC) is a tuple D=(S,P,AP, L)
with the following components:

– S is a nonempty finite set of states;
– P : S×S → [0, 1] is a transition probability function with

∑

s′∈S P(s, s′) = 1,
for all s ∈ S;

– AP is a finite set of atomic propositions, and
– L : S → 2AP is a labeling function. �

Fig 1 shows a simple DTMC. An (infinite) path of D is an infinite sequence
π = s0s1s2 . . . ∈ Sω of states with P(si, si+1) > 0, for all i ≥ 0; we write π[i]
for si. Let PathsDs denote the set of all (infinite) paths of D starting in s, and
fPathsDs denote the set of all non-empty finite prefixes of paths from PathsDs ,
which we call finite paths. For a finite path π = s0 . . . sk ∈ fPathsDs0 , k ≥ 0,

we define |π| = k. We will also use the notations PathsD = ∪s∈SPaths
D
s and

fPathsD = ∪s∈S fPaths
D
s . A state t ∈ S is reachable from a state s ∈ S in D if

there exists a finite path in fPathsDs with last state t; we use fPathsDs,T to denote

the set of all finite paths from fPathsDs with last state in T ⊆ S. A state s ∈ S
is absorbing if P(s, s) = 1.

The cylinder set CylD(π) of a finite path π ∈ fPathsDs is the set of all in-
finite paths of D with prefix π. The probability space for D and state s ∈ S
is (PathsDs , {∪π∈RCyl

D(π) |R ⊆ fPathsDs },Pr
D
s ), where the probability of the

cylinderset of π ∈ fPathsDs is PrDs (Cyl
D(π)) = Π

|π|
i=1P(π[i−1], π[i]).

Note that the cylinder sets of two finite paths starting in the same state are
either disjoint or one is contained in the other. According to the definition of
the probability spaces, the total probability for a set of cylinder sets defined
by the finite paths R ⊆ fPathsDs is PrD(R) =

∑

π∈R′ Pr
D
s (π) with R′ = {π ∈

R | no π′ ∈ R \ {π} is a prefix of π}. To improve readability, we sometimes omit
the DTMC index D in the notations when it is clear from the context.

Parallel composition formalizes simultaneous runs in different DTMCs.

Definition 2. The parallel composition of two DTMCs Di = (Si,Pi,APi, Li),
i = 1, 2, is the DTMC D1 ×D2 = (S,P,AP, L) with the following components:

– S = S1 × S2;
– P : S × S → [0, 1] with P((s1, s2), (s

′
1, s

′
2)) = P1(s1, s

′
1) · P2(s2, s

′
2), for all

states (s1, s2), (s
′
1, s

′
2) ∈ S;
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– AP = AP1 ∪ AP2, and
– L : S → 2AP with L((s1, s2)) = L1(s1) ∪ L2(s2). �

Markov decision processes extend DTMCs with non-deterministic choices.

Definition 3. A Markov decision process (MDP) is a tuple M = (S,Act ,P,AP, L)
with the following components:

– S is a nonempty finite set of states;
– Act is a nonempty finite set of actions;
– P : S×Act ×S → [0, 1] is a transition probability function such that for all
s ∈ S the set of enabled actions in s Act(s) = {α ∈ Act |

∑

s′∈S P(s, α, s′) =
1} is not empty and

∑

s′∈S P(s, α, s′) = 0 for all α ∈ Act \Act(s);
– AP is a finite set of atomic propositions, and
– L : S → 2AP is a labeling function. �

Fig. 2 shows a simple MDP. Schedulers can be used to eliminate the non-
determinism in MDPs, inducing DTMCs with well-defined probability spaces.

Definition 4. A scheduler for an MDP M = (S,Act ,P,AP, L) is a tuple σ =
(Q, act ,mode, init), where

– Q is a countable set of modes;
– act : Q× S×Act → [0, 1] is a function for which

∑

α∈Act(s) act(q, s, α) = 1

and
∑

α∈Act\Act(s) act(q, s, α) = 0 for all s ∈ S and q ∈ Q;
– mode : Q× S → Q is a mode transition function, and
– init : S → Q is a function selecting a starting mode for each state of M. �

Let ΣM denote the set of all schedulers for the MDP M. A scheduler is finite-
memory ifQ is finite,memoryless if |Q| = 1, and non-probabilistic if act(q, s, α) ∈
{0, 1} for all q ∈ Q, s ∈ S and α ∈ Act .

Definition 5. Assume an MDP M = (S,Act ,P,AP, L) and a scheduler σ =
(Q, act ,mode, init) ∈ ΣM for M. The DTMC induced by M and σ is defined
as Mσ = (Sσ,Pσ,AP, Lσ) with Sσ = Q× S,

Pσ((q, s), (q′, s′)) =

{∑

α∈Act(s) act(q, s, α) ·P(s, α, s′) if q′ = mode(q, s)

0 otherwise

and Lσ(q, s) = L(s) for all s, s′ ∈ S and all q, q′ ∈ Q. �

A state s′ is reachable from s ∈ S in MDP M is there exists a scheduler σ for
M such that s′ is reachable from s in Mσ. A state s ∈ S is absorbing in M if
s is absorbing in Mσ for all schedulers σ for M. We sometimes omit the MDP
index M in the notations when it is clear from the context.

3 HyperPCTL for MDPs

In this section we extend HyperPCTL from [7] for DTMCs, to argue also about
non-determinism in MDPs.
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3.1 HyperPCTL Syntax

HyperPCTL (quantified) state formulas ϕq are inductively defined as follows:

quantified formula ϕq ::= ∀σ̂.ϕq | ∃σ̂.ϕq | ∀ŝ(σ̂).ϕq | ∃ŝ(σ̂).ϕq | ϕnq

non-quantified formula ϕnq ::= true | aŝ | ϕnq ∧ ϕnq | ¬ϕnq | ϕpr < ϕpr

probability expression ϕpr ::= P(ϕpath) | f(ϕpr
1 , . . . , ϕ

pr
k )

path formula ϕpath ::= ϕnq | ϕnq U ϕnq | ϕnq U [k1,k2] ϕnq

where σ̂ is a scheduler variable1 from an infinite set Σ̂ , ŝ is a state variable
from an infinite set Ŝ, ϕnq is a quantifier-free state formula, a ∈ AP is an
atomic proposition, ϕpr is a probability expression, f : [0, 1]k → R are k-ary
arithmetic operators (binary addition, unary/binary subtraction, binary multi-
plication) over probabilities, where constants are viewed as 0-ary functions, and
ϕpath is a path formula, such that k1 ≤ k2 ∈ N≥0. The probability operator P

allows the usage of probabilities in arithmetic constraints and relations.
A HyperPCTL construct ϕ (probability expression ϕpr, state formula ϕq, ϕnq

or path formula ϕpath) is well-formed if each occurrence of any aŝ with a ∈ AP

and ŝ ∈ Ŝ is in the scope of a state quantifier for ŝ(σ̂) for some σ̂ ∈ Σ̂ , and
any quantifier for ŝ(σ̂) is in the scope of a scheduler quantifier for σ̂. We restrict
ourselves to quantifying first the schedulers then the states, i.e., different state
variables can share the same scheduler. One can consider also local schedulers
when different players cannot explicitly share the same scheduler, or in other
words, each scheduler quantifier belongs to exactly one of the quantified states.

HyperPCTL formulas are well-formed HyperPCTL state formulas, where we
additionally allow standard syntactic sugar like false = ¬true, ϕ1 ∨ ϕ2 =
¬(¬ϕ1 ∧ ¬ϕ2), ϕ = true U ϕ, and P( ϕ) = 1 − P( ¬ϕ). For example, the
HyperPCTL state formula ∀σ̂.∃ŝ(σ̂).P( aŝ) < 0.5 is a HyperPCTL formula. The
HyperPCTL state formula P( aŝ)<0.5 is not a HyperPCTL formula, but can be
extended to such. The HyperPCTL state formula ∀ŝ(σ̂).∃σ̂.P( aŝ)<0.5 is not a
HyperPCTL formula, and it even cannot can be extended to such.

3.2 HyperPCTL Semantics

The semantics of HyperPCTL is based on the n-ary self-composition of an MDP.

Definition 6. The n-ary self-composition of an MDP M = (S,Act ,P,AP, L)
for a sequence σ = (σ1, . . . , σn) ∈ (ΣM)n of schedulers for M is the DTMC
parallel composition Mσ = Mσ1

1 × . . .×Mσn
n , where Mσi

i is the DTMC induced
by Mi and σi, and where Mi = (S,Act ,P,APi, Li) with APi = {ai | a ∈ AP}
and Li(s) = {ai | a ∈ L(s)}, for all s ∈ S. �

HyperPCTL state formulas are evaluated in the context of an MDP M =
(S,Act ,P,AP, L), a sequence σ = (σ1, . . . , σn) ∈ (ΣM)n of schedulers, and a

1 We use the notation σ̂ for scheduler variables and σ for schedulers, and analogously
ŝ for state variables and s for states.
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sequence r = ((q1, s1), . . . , (qn, sn)) of Mσ states; we use () to denote the empty
sequence (of any type) and ◦ for concatenation. Intuitively, these sequences store
instantiations for scheduler and state variables. The satisfaction of a HyperPCTL

quantified formula by M is defined by

M |= ϕ iff M, (), () |= ϕ .

The semantics evaluates HyperPCTL formulas by structural recursion. Let in the
following Q,Q′, . . . denote quantifiers from {∀, ∃}. When instantiating Qσ̂.ϕ by
a scheduler σ ∈ ΣM, we replace in ϕ each subformula Q′ŝ(σ̂).ϕ′, that is not in
the scope of a quantifier for σ̂ by Q′ŝ(σ).ϕ′, and denote the result by ϕ[σ̂  
σ]. For instantiating a state quantifier Qŝ(σ).ϕ by a state s, we append σ =
(Q, act ,mode, init) and (init(s), s) at the end of the respective sequences, and
replace each aŝ in the scope of the given quantifier by as, resulting in a formula
that we denote by ϕ[ŝ  s]. To evaluate probability expressions, we use the
n-ary self-composition of the MDP.

Formally, the semantics judgment rules are as follows:

M,σ, r |= true

M,σ, r |= ai iff ai ∈ Lσ(r)
M,σ, r |= ϕ1 ∧ ϕ2 iff M,σ, r |= ϕ1 and M,σ, r |= ϕ2

M,σ, r |= ¬ϕ iff M,σ, r 6|= ϕ

M,σ, r |= ∀σ̂.ϕ iff ∀σ ∈ ΣM. M,σ, r |= ϕ[σ̂  σ]

M,σ, r |= ∃σ̂.ϕ iff ∃σ ∈ ΣM. M,σ, r |= ϕ[σ̂  σ]
M,σ, r |= ∀ŝ(σ).ϕ iff ∀sn+1 ∈ S. M,σ ◦ σ, r ◦ (init(sn+1), sn+1) |= ϕ[ŝ sn+1]
M,σ, r |= ∃ŝ(σ).ϕ iff ∃sn+1 ∈ S. M,σ ◦ σ, r ◦ (init(sn+1), sn+1) |= ϕ[ŝ sn+1]
M,σ, r |= ϕ

pr
1 < ϕ

pr
2 iff Jϕpr

1 KM,σ,r < Jϕpr
2 KM,σ,r

JP(ϕpath)KM,σ,r = PrM
σ(

{π ∈ PathsM
σ

r
| M,σ, π |= ϕpath}

)

Jf(ϕpr
1 , . . . ϕ

pr

k )KM,σ,r = f
(

Jϕpr
1 KM,σ,r . . . , Jϕpr

k KM,σ,r

)

where M is an MDP; n ∈ N≥0 is non-negative integer; σ ∈ (ΣM)n; r is a
state of Mσ; a ∈ AP is an atomic proposition and i ∈ {1, . . . , n}; ϕ, ϕ1, ϕ2 are
HyperPCTL state formulas; σ = (Q, act ,mode, init) ∈ ΣM is a scheduler for M;
ϕpr
1 · · ·ϕpr

k are probability expressions, and ϕpath is a HyperPCTL path formula
whose satisfaction relation is as follows:

M,σ, π |= ϕ iff M,σ, r1 |= ϕ

M,σ, π |= ϕ1 U ϕ2 iff ∃j ≥ 0.
(

M,σ, rj |= ϕ2 ∧ ∀i ∈ [0, j). M,σ, ri |= ϕ1

)

M,σ, π |= ϕ1 U
[k1,k2] ϕ2 iff ∃j ∈ [k1, k2].

(

M,σ, rj |= ϕ2 ∧ ∀i ∈ [0, j).M,σ, ri |= ϕ1

)

where π = r0r1 · · · with ri = ((qi,1, si,1), . . . , (qi,n, si,n)) is a path of Mσ;
formulas ϕ, ϕ1, and ϕ2 are HyperPCTL state formulas, and k1 ≤ k2 ∈ N≥0.

3.3 The Expressiveness Power of HyperPCTL

For MDPs with |Act(s)| = 1 for each of its states s, the HyperPCTL semantics
reduces to the one proposed in [7] for DTMCs.
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For MDPs with non-determinism, the standard PCTL semantics defines that
in order to satisfy a PCTL formula P∼c(ψ) in a given MDP state s, all schedulers
should induce a DTMC that satisfies P∼c(ψ) in s. Though it should hold for
all schedulers, it is known that there exist minimal and maximal schedulers
that are non-probabilistic and memoryless, therefore it is sufficient to restrict
the reasoning to such schedulers. Since for MDPs with finite state and action
spaces, the number of such schedulers is finite, PCTL model checking for MDPs is
decidable. Given this analogy, one would expect that HyperPCTL model checking
should be decidable, but it is not.

Theorem 1. HyperPCTL model checking for MDPs is in general undecidable.

What is the source of increased expressiveness that makes HyperPCTL unde-
cidable? State quantification cannot be the source, as the state space is finite
and thus there are finitely many possible state quantifier instantiations.

Assume an MDP M = (S,Act ,P,AP, L) with a state s ∈ S that is uniquely
labelled by the proposition init ∈ L(s), and let a, b ∈ AP. In PCTL, each prob-
ability bound needs to be satisfied under all schedulers. For example:

M, s |=PCTL P<0.5(aU b) iff M |=HyperPCTL ∀σ̂.∀ŝ(σ̂).(initŝ → P(aU b) < 0.5)

Alternatively, we can state:

M, s |=PCTL P<0.5(aU b) iff ∀σ∈ΣM
.M, (σ), ((initσ(s), s)) |=HyperPCTL P(aUb)<0.5

where initσ(s) is the starting mode of scheduler σ in state s. Generally, the
HyperPCTL fragment which starts with a single universal scheduler quantifier
and contains a single bound on a single probability operator is still decidable.
However, when a PCTL formula has several probability bounds, its satisfaction
requires each bound to be satisfied by all schedulers independently. For example,

M, s |=PCTL

(

P<0.5(aU b) ∨ P>0.5(aU b)
)

iff

∀σ ∈ ΣM. M, (σ), ((initσ(s), s)) |=HyperPCTL P(aU b) < 0.5 or

M, (σ), ((initσ(s), s)) |=HyperPCTL P(aU b) > 0.5

This is not equivalent to the HyperPCTL formula

M |=HyperPCTL ∀σ̂.∀ŝ(σ̂).(initŝ → (P(aŝ U bŝ) < 0.5 ∨ P(aŝ U bŝ) > 0.5))

which states that the probability is either less than or larger than 0.5 under all
schedulers, which is true if there exists no scheduler under which the probability
is 0.5 (see also [12]). Thus, even for a fragment restricted to universal scheduler
quantification, combinations of probability bounds allows HyperPCTL to express
existential scheduler synthesis problems.

Finally, consider a scheduler quantifier followed by state quantifiers, whose
scope may contain probability expressions. This means we start several “experi-
ments” in parallel, each one represented by a state quantifier. However, we may
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use in all experiments the same scheduler. Informally, this allows us to express
the existence or absence of schedulers with certain probabilistic hyperproperties
for the induced DTMCs. It would however also make sense to flip this quanti-
fier order, such that state quantifiers are followed by scheduler quantifiers. This
would mean, that we can use different schedulers in the different concurrently
running experiments. This would be meaningful e.g. when users can provide
input to the system, i.e. when the scheduler choice lies by the “observers” of
the individual experiments, and they can adapt their schedulers to observations
made in the other concurrently running experiments.

4 Applications of HyperPCTL on MDPs

1 void mexp( ) {
2 c = 0 ; d = 1 ; i = k ;
3 whi l e ( i >= 0){
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f ( b ( i ) = 1)
7 c = c+1;
8 d = (d∗a ) % n ;
9 }

10 }
11 /∗∗∗∗∗∗∗∗∗∗∗∗/
12 t = new Thread (mexp( ) ) ;
13 j = 0 ; m = 2 ∗ k ;
14 whi l e ( j < m & ! t . stop ) j++;
15 /∗∗∗∗∗∗∗∗∗∗∗∗/

Fig. 4: Modular exponentiation.

Side-channel timing leaks open a channel to
an attacker to infer the value of a secret by
observing the execution time of a function.
For example, the heart of the RSA public-key
encryption algorithm is the modular exponen-
tiation algorithm that computes (ab mod n),
where a is an integer representing the plain-
text and b is the integer encryption key. A
careless implementation can leak b through a
probabilistic scheduling channel (see Fig. 4).
This program is not secure since the two
branches of the if have different timing be-
haviors. Under a fair execution scheduler for parallel threads, an attacker thread
can infer the value of b by running in parallel to a modular exponentiation thread
and iteratively incrementing a counter variable until the other thread terminates
(lines 12-14). To model this program by an MDP, we can use two nondetermin-
istic actions for the two branches of the if statement, such that the choice of
different schedulers corresponds to the choice of different bit configurations b(i)
for the key b. This algorithm should satisfy the following property: the proba-
bility of observing a concrete value in the counter j should be independent of
the bit configuration of the secret key b:

∀σ̂1.∀σ̂2.∀ŝ(σ̂1).∀ŝ
′(σ̂2).

(

initŝ ∧ initŝ′
)

⇒
m
∧

l=0

(

P( (j = l)ŝ) = P( (j = l)ŝ′)
)

1 i n t str cmp ( char ∗ r ){
2 char ∗ s = ’Bg\$4 \0 ’ ;
3 i = 0 ;
4 whi l e ( s [ i ] != ’\0 ’ ) {
5 i++;
6 i f ( s [ i ] != r [ i ] ) re turn 0 ;
7 }
8 re turn 1 ;
9 }

Fig. 5: String comparison.

Another example of timing attacks that
can be implemented through a probabilistic
scheduling side channel is password verifica-
tion which is typically implemented by com-
paring an input string with another confi-
dential string (see Fig 5). Also here, an at-
tacker thread can measure the time necessary
to break the loop, and use this information to
infer the prefix of the input string matching the secret string.
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Scheduler-specific observational determinism policy (SSODP) [13] is a confiden-
tiality policy in multi-threaded programs that defends against an attacker that
chooses an appropriate scheduler to control the set of possible traces. In partic-
ular, given any scheduler and two initial states that are indistinguishable with
respect to a secret input (i.e., low-equivalent), any two executions from these two
states should terminate in low-equivalent states with equal probability. Formally,
given a proposition h representing a secret:

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(

hŝ ⊕ hŝ′
)

⇒
∧

l∈L

(

P( lŝ) = P( lŝ′)
)

where l ∈ L are atomic propositions that classify low-equivalent states and
⊕ is the exclusive-or operator. A stronger variation of this policy is that the
executions are stepwise low-equivalent:

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(

hŝ ⊕ hŝ′
)

⇒ P
(

∧

l∈L

(

(P lŝ) = (P lŝ′)
))

= 1.

Probabilistic conformance describes how well a model and an implementation
conform with each other with respect to a specification. As an example, consider
a 6-sided die. The probability to obtain one possible side of the die is 1/6. We
would like to synthesize a protocol that simulates the 6-sided die behavior only by
repeatedly tossing a fair coin. We know that such an implementation exists [14],
but our aim is to find such a solution automatically by modeling the die as a
DTMC and by using an MDP to model all the possible coin-implementations
with a given maximum number of states, including 6 absorbing final states to
model the outcomes. In the MDP, we associate to each state a set of possible
nondeterministic actions, each of them choosing two states as successors with
equal probability 1/2. Then, each scheduler corresponds to a particular imple-
mentation. Our goal is to check whether there exists a scheduler that induces a
DTMC over the MDP, such that repeatedly tossing a coin simulates die-rolling
with equal probabilities for the different outcomes:

∃σ̂.∀ŝ(σ̂).∃ŝ′(σ̂).
(

initŝ ∧ initŝ′
)

⇒
6
∧

l=1

(

P( (die = l)ŝ) = P( (die = l)ŝ′)
)

5 HyperPCTL Model Checking for Non-probabilistic

Memoryless Schedulers

Due to the undecidability of model checking HyperPCTL formulas for MDPs, we
noe restrict ourselves the semantics, where scheduler quantification ranges over
non-probabilistic memoryless schedulers only. It is easy to see that this restriction
makes the model checking problem decidable, as there are only finitely many such
schedulers that can be enumerated. Regarding complexity, we have the following
property.
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Theorem 2. The problem to decide for MDPs the truth of HyperPCTL formulas
with a single existential (respectively, universal) scheduler quantifier over non-
probabilistic memoryless schedulers is NP-complete (respectively, coNP-complete)
in the state set size of the given MDP.

Next we propose an SMT-based technique for solving the model checking
problem for non-probabilistic memoryless scheduler domains, and for the sim-
plified case of having a single scheduler quantifier; the general case for an arbi-
trary number of scheduler quantifiers is similar, but a bit more involved, so the
simplified setting might be more suitable for understanding the basic ideas.

Algorithm 1: Main SMT encoding algorithm

Input : M = (S,Act ,P,AP, L): MDP;
Qσ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕ

nq: HyperPCTL formula.
Output: Whether M satisfies the input formula.

1Function Main(M, Qσ̂. Q1ŝ1(σ̂). . . . Qnŝn(σ̂). ϕ
nq)

2 E :=
∧

s∈S(
∨

α∈Act(s) σs = α) // scheduler choice

3 if Q is existential then
4 E := E∧ Semantics(M, ϕnq, n);
5 E := E∧ Truth(M, ∃σ̂. Q1ŝ1(σ̂). . . . Qnŝn(σ̂). ϕ

nq);
6 if check(E) = SAT then return TRUE ;
7 else return FALSE ;

8 else if Q is universal then
// Qi is ∀ if Qi = ∃ and ∃ else

9 E := E∧ Semantics(M,¬ϕnq, n);

10 E := E∧ Truth(M, ∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).¬ϕ
nq);

11 if check(E) = SAT then return FALSE ;
12 else return TRUE ;

The main method listed in
Algorithm 1 constructs a for-
mula E that is satisfiable if
and only if the input MDP
M satisfies the input Hyper-

PCTL formula with a single
scheduler quantifier over the
non-probabilistic memoryless
scheduler domain. Let us first
deal with the case that the
scheduler quantifier is existen-
tial. In line 2 we encode pos-
sible instantiations σ for the
scheduler variable σ̂, for which
we use a variable σs for each
MDP state s ∈ S to encode
which action is chosen in that
state. In line 4 we encode the meaning of the quantifier-free inner part ϕnq of
the input formula, whereas line 5 encodes the meaning of the state quantifiers,
i.e. for which sets of composed states ϕnq needs to hold in order to satisfy the
input formula. In lines 6–7 we check the satisfiability of the encoding and return
the corresponding answer. Formulas with a universal scheduler quantifier ∀σ̂.ϕ
are semantically equivalent to ¬∃σ̂.¬ϕ. We make use of this fact in lines 8–12
to check first the satisfaction of an encoding for ∃σ̂.¬ϕ and return the inverted
answer.

The Semantics method, shown in Algorithm 2, applies structural recursion
to encode the meaning of its quantifier-free input formula. As variables, the
encoding uses (1) propositions holdss,ϕnq ∈ {true, false} to encode the truth
of each Boolean sub-formula ϕnq of the input formula in each state s ∈ Sn of
the n-ary self-composition of M, (2) numeric variables prob

s,ϕpr ∈ [0, 1] ⊆ R to
encode the value of each probability expression ϕpr in the input formula in the
context of each composed state s ∈ Sn, (3) variables holdsToInts,ϕpr ∈ {0, 1}
to encode truth values in a pseudo-Boolean form, i.e. we set holdsToInts,ϕpr = 1
for holdss,ϕnq = true and prob

s,ϕpr = 0 else and (4) variables ds,ϕ to encode the
existence of a loop-free path from state s to a state satisfying ϕ.
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Algorithm 2: SMT encoding for the meaning of the input formula

Input : M = (S,Act ,P,AP, L): MDP;
ϕ: quantifier-free HyperPCTL formula or expression;
n: number of state variables in ϕ.

Output : SMT encoding of the meaning of ϕ in the n-ary self-composition of M.
1Function Semantics(M, ϕ, n)
2 if ϕ is true then E :=

∧

s∈Sn holdss,ϕ;
3 else if ϕ is aŝi then
4 E := (

∧

s∈Sn, a∈L(si)
(holdss,ϕ)) ∧ (

∧

s∈Sn, a/∈L(si)
(¬holdss,ϕ));

5 else if ϕ is ϕ1 ∧ ϕ2 then
6 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n)∧
7

∧

s∈Sn((holdss,ϕ∧holdss,ϕ1∧holdss,ϕ2) ∨ (¬holdss,ϕ∧(¬holdss,ϕ1∨¬holdss,ϕ2)));

8 else if ϕ is ¬ϕ′ then
9 E := Semantics(M, ϕ′, n) ∧

∧

s∈Sn(holdss,ϕ ⊕ holds
s,ϕ′);

10 else if ϕ is ϕ1 < ϕ2 then
11 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n)∧
12

∧

s∈Sn((holdss,ϕ ∧ prob
s,ϕ1

< prob
s,ϕ2

) ∨ (¬holdss,ϕ ∧ prob
s,ϕ1

≥ prob
s,ϕ2

));

13 else if ϕ is P( ϕ′) then
14 E := Semantics(M, ϕ′, n)∧
15

∧

s∈Sn

(

(holdsToInt
s,ϕ′ = 1 ∧ holds

s,ϕ′) ∨ (holdsToInt
s,ϕ′ = 0 ∧ ¬holds

s,ϕ′)
)

;
16 foreach s = (s1, . . . , sn) ∈ Sn do
17 foreach α = (α1, . . . , αn) ∈ Act(s1)× . . .× Act(sn) do
18 E := E ∧

([
∧n

i=1 σsi = αi

]

→
[

prob
s,ϕ =

19

∑

s
′∈supp(α1)×...×supp(αn)((Π

n
i=1P(si, αi, s

′
i)) · holdsToInts′,ϕ′)

])

;

20 else if ϕ is P(ϕ1 U ϕ2) then E := SemanticsUnboundedUntil(M, ϕ, n);

21 else if ϕ is P(ϕ1 U
[k1,k2]ϕ2) then E := SemanticsBoundedUntil(M, ϕ, n);

22 else if ϕ is c then E :=
∧

s∈Sn(probs,ϕ = c);

23 else if ϕ is ϕ1 op ϕ2 /* op ∈ {+,−, ∗} */ then
24 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n)∧

∧

s∈Sn(probs,ϕ = (prob
s,ϕ1

op prob
s,ϕ2

));

25 return E;

There are two base cases: the Boolean constant true holds in all states (line
2), whereas atomic propositions hold in exactly those states that are labelled by
them (line 3). For conjunction (line 5) we recursively encode the truth values of
the operands and state that the conjunction is true iff both operands are true.
For negation (line 8) we again encode the meaning of the operand recursively
and flip its truth value. For the comparison of two probability expressions (line
10), we recursively encode the probability values of the operands and state the
respective relation between them for the satisfaction of the comparison.

The remaining cases encode the semantics of probability expressions. The
cases for constants (line 22) and arithmetic operations (line 23) are straight-
forward. For the probability P( ϕ′) (line 13), we encode the Boolean value of
ϕ′ in the variables holdss,ϕ′ (line 14), turn them into pseudo-Boolean values
holdsToInts,ϕ′ (1 for true and 0 for false, line 15), and state that for each com-
posed state, the probability value of P( ϕ′) is the sum of the probabilities to
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Algorithm 3: SMT encoding for the meaning of unbounded until formulas

Input : M = (S,Act ,P,AP, L): MDP; ϕ: HyperPCTL unbounded until formula of the
form P(ϕ1 U ϕ2); n: number of state variables in ϕ.

Output : SMT encoding of ϕ’s meaning in the n-ary self-composition of M.
1Function SemanticsUnboundedUntil(M, ϕ = P(ϕ1 U ϕ2), n)
2 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n);
3 foreach s = (s1, . . . , sn) ∈ Sn do
4 E := E ∧ (holdss,ϕ2 → prob

s,ϕ=1) ∧ ((¬holdss,ϕ1 ∧ ¬holdss,ϕ2) → prob
s,ϕ=0);

5 foreach α = (α1, . . . , αn) ∈ Act(s1)× . . .× Act(sn) do

6 E := E ∧
(

[

holdss,ϕ1 ∧ ¬holdss,ϕ2 ∧
∧n

i=1 σsi = αi

]

→

7

[

prob
s,ϕ =

∑

s
′∈supp(α1)×...×supp(αn)((Π

n
i=1P(si, αi, s

′
i)) · probs′,ϕ)∧

8 (prob
s,ϕ>0 → (

∨

s
′∈supp(α1)×...×supp(αn)(holdss′,ϕ2

∨ds,ϕ2>d
s
′,ϕ2

)))
]

)

;

9 return E;

get to a successor state where the operand ϕ′ holds; since the successors and
their probabilities are scheduler-dependent, we need to iterate over all scheduler
choices and use supp(αi) to denote the support {s ∈ S αi(s) > 0} of the dis-
tribution αi (line 17). The encodings for the probabilities of unbounded until
formulas (line 20) and bounded until formulas (line 21) are listed in Algorithm
3 and 4, respectively.

For the probabilities P(ϕ1 U ϕ2) to satisfy an unbounded until formula, the
method SemanticsUnboundedUntil shown in Algorithm 3 first encodes the mean-
ing of the until operands (line 2). For each composed state s ∈ Sn, the probability
of satisfying the until formula in s is encoded in the variable prob

s,P(ϕ1 U ϕ2). If
the second until-operand ϕ2 holds in s then this probability is 1 and if none
of the operands are true in s then it is 0 (line 4). Otherwise, depending on
the scheduler σ of M (line 5), the value of prob

s,P(ϕ1 U ϕ2) is a sum, adding up
for each successor state s

′ of s the probability to get from s to s
′ in one step

times the probability to satisfy the until-formula on paths starting in s
′ (line

7). However, these encodings work only when at least one state satisfying ϕ2 is
reachable from s with a positive probability: for any bottom SCC whose states
all violate ϕ2, the probability P(ϕ1 U ϕ2) is obviously 0, however, assigning any
fixed value from [0, 1] to all states of this bottom SCC would yield a fixed-point
for the underlying equation system. To assure correctness, in line 8 we enforce
smallest fixed-points by requiring that if prob

s,P(ϕ1 U ϕ2) is positive then there
exists a loop-free path from s to any state satisfying ϕ2. In the encoding of this
property we use fresh variables ds,ϕ2 and require a path over states with strong
monotonically decreasing ds,ϕ2-values to a ϕ2-state (where the decreasing prop-
erty serves to exclude loops). The domain of the distance-variables ds,ϕ2 can be
e.g. integers, rationals or reals; the only restriction is that is should contain at
least |S|n ordered values. Especially, it does not need to be lower bounded (note
that each solution assigns to each ds,ϕ2 a fixed value, leading a finite number of
distance values).
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Algorithm 4: SMT encoding for the meaning of bounded until formulas

Input : M = (S,Act ,P,AP, L): MDP; ϕ: HyperPCTL bounded until formula of the
form P(ϕ1 U

[k1,k2]ϕ2); n: number of state variables in ϕ.
Output : SMT encoding of ϕ’s meaning in the n-ary self-composition of M.

1Function SemanticsBoundedUntil(M, ϕ = P(ϕ1 U
[k1,k2]ϕ2), n)

2 if k2 = 0 then
3 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n);
4 foreach s = (s1, . . . , sn) ∈ Sn do
5 E := E ∧ (holdss,ϕ2→prob

s,ϕ=1) ∧ (¬holdss,ϕ2→prob
s,ϕ=0);

6 else if k1 = 0 then

7 E := SemanticsBoundedUntil(M, P(ϕ1 U
[0,k2−1]ϕ2), n);

8 foreach s = (s1, . . . , sn) ∈ Sn do
9 E := E ∧ (holdss,ϕ2→prob

s,ϕ=1) ∧ ((¬holdss,ϕ1 ∧ ¬holdss,ϕ2)→prob
s,ϕ=0);

10 foreach α = (α1, . . . , αn) ∈ Act(s1)× . . .× Act(sn) do

11 E := E ∧
(

[

holdss,ϕ1 ∧ ¬holdss,ϕ2 ∧
∧n

i=1 σsi = αi

]

→
[

prob
s,ϕ =

12

∑

s
′∈supp(α1)×...×supp(αn)((Π

n
i=1P(si, αi, s

′
i)) · probs′,P(ϕ1 U [0,k2−1]ϕ2)

)
]

)

;

13 else if k1 > 0 then

14 E := SemanticsBoundedUntil(M, P(ϕ1 U
[k1−1,k2−1]ϕ2), n);

15 foreach s = (s1, . . . , sn) ∈ Sn do
16 E := E ∧ (¬holdss,ϕ1 → prob

s,ϕ = 0);

17 foreach α = (α1, . . . , αn) ∈ Act(s1)× . . .× Act(sn) do

18 E := E ∧
(

[

holdss,ϕ1 ∧
∧n

i=1 σsi = αi

]

→
[

prob
s,ϕ =

19

∑

s
′∈supp(α1)×...×supp(αn)((Π

n
i=1P(si, αi, s

′
i)) · probs′,P(ϕ1 U [k1−1,k2−1]ϕ2)

)
]

)

;

20 return E;

Algorithm 5: SMT encoding of the truth of the input formula

Input : M = (S,Act ,P,AP, L): MDP;
∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕ

nq: HyperPCTL formula.
Output: Encoding of the truth of the input formula in M.

1Function Truth(M, ∃σ̂. Q1ŝ1(σ̂). . . . Qnŝn(σ̂). ϕ
nq)

2 foreach i = 1, . . ., n do
3 if Qi = ∀ then Bi :=”

∧

si∈S”;

4 else Bi :=”
∨

si∈S”;

5 return B1 . . . Bn holds(s1,...,sn),ϕnq ;

The SemanticsBound-
edUntil method, listed
in Algorithm 4, en-
codes the probability
P(ϕ1 U

[k1,k2]ϕ2) of a
bounded until formula
in the numeric variables
prob

s,P(ϕ1 U [k1,k2]ϕ2)
for

all (composed) states
s ∈ Sn and recursively
reduced time bounds. There are three main cases: (i) the satisfaction of
ϕ1 U [0,k2−1]ϕ2 requires to satisfy ϕ2 immediately (lines 2–5); (ii) ϕ1 U [0,k2−1]ϕ2

can be satisfied by either satisfying ϕ2 immediately or satisfying it later, but in
the latter case ϕ1 needs to hold currently (lines 6–12); (iii) ϕ1 has to hold and
ϕ2 needs to be satisfied some time later (lines 13–19). To avoid the repeated
encoding of the semantics of the operands, we do it only when we reach case
(i) where recursion stops (line 3). For the other cases, we recursively encode the
probability to reach a ϕ2-state over ϕ1 states where the deadlines are reduced
with one step (lines 7 resp. 14) and use these to fix the values of the variables
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prob
s,P(ϕ1 U [k1,k2]ϕ2)

, similarly to the unbounded case but under additional con-
sideration of time bounds.

Finally, the Truth method listed in Algorithm 5 encodes the meaning of the
state quantification: it states for each universal quantifier that instantiating it
with any MDP state should satisfy the formula (conjunction over all states in
line 3), and for each existential state quantification that at least one state should
lead to satisfaction (disjunction in line 4).

Theorem 3. Algorithm 1 returns a formula that is true iff its input HyperPCTL
formula is satisfied by the input MDP.

We note that the satisfiability of the generated SMT encoding for a formula
with an existential scheduler quantifier does not only prove the truth of the
formula but provides also a scheduler as witness, encoded in the solution of the
SMT encoding. Conversely, unsatisfiability of the SMT encoding for a formula
with a universal scheduler quantifier provides a counterexample scheduler.

6 Evaluation

We developed a prototypical implementation of our algorithm in python, with
the help of several libraries. There is an extensive use of STORMPY [15,16], which
provides efficient solution to parsing, building, and storage of MDPs. We used
the SMT-solver Z3 [17] to solve the logical encoding generated by Algorithm 1.
All of our experiments were run on a MacBook Pro laptop with a 2.3GHz i7
processor with 32GB of RAM. The results are presented in Table 1.

As the first case study, we model and analyze information leakage in the
modular exponentiation algorithm (function modexp in Fig. 4); the corresponding
results in Table 1 are marked by TA. We experimented with 1, 2, and 3 bits
for the encryption key (hence, m ∈ {2, 4, 6}). The specification checks whether
there is a timing channel for all possible schedulers, which is the case for the
implementation in modexp.

Our second case study is verification of password leakage thorough the string
comparison algorithm (function str cmp in Fig 5). Here, we also experimented
with m ∈ {2, 4, 6}; results in Table 1 are denoted by PW.

In our third case study, we assume two concurrent processes. The first process
decrements the value of a secret h by 1 as long as the value is still positive, and
after this it sets a low variable l to 1. A second process just sets the value
of the same low variable l to 2. The two threads run in parallel; as long as
none of them terminated, a fair scheduler chooses for each CPU cycle the next
executing thread. As discussed in Section 1, this MDP opens a probabilistic
thread scheduling channel and leaks the value of h. We denote this case study
by TS in Table 1, and compare observations for executions with different secret
values h1 and h2 (denoted as h = (h1, h2) in the table). There is an interesting
relation between the execution times for TA and TS. For example, although
the MDP for TA with m = 4 has 60 reachable states and the MDP for TS
comparing executions for h = (0, 15) has 35 reachable states, verification of TS
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Case Running time (s) #SMT #subformulas #states #transitions
study SMT encoding SMT solving Total variables

TA
m = 2 5.43 0.31 5.74 8088 50654 24 46
m = 4 114 20 134 50460 368062 60 136
m = 6 1721 865 2586 175728 1381118 112 274

PW
m = 2 5.14 0.3 8.14 8088 43432 24 46
m = 4 207 40 247 68670 397852 70 146
m = 6 3980 1099 5079 274540 1641200 140 302

TS

h = (0, 1) 0.83 0.07 0.9 1379 7913 7 13
h = (0, 15) 60 1607 1667 34335 251737 35 83
h = (4, 8) 11.86 17.02 28.88 12369 87097 21 48
h = (8, 15) 60 1606 1666 34335 251737 35 83

PC
s=(0) 277 1996 2273 21220 1859004 20 158
s=(0,1) 822 5808 6630 21220 5349205 20 280
s=(0,1,2) 1690 58095 59785 21220 11006581 20 404

Table 1: Experimental results. TA: Timing attack. PW: Password leakage. TS:
Thread scheduling. PC: Probabilistic conformance.

takes 20 times more than TA. We believe this is because the MDP of TS is
twice deeper than the MDP of TA, making the SMT constraints more complex.

Our last case study is on probabilistic conformance, denoted PC. The input
is a DTMC that encodes the behavior of a 6-sided die as well as a structure
of actions having probability distributions with two successor states each; these
transitions can be pruned using a scheduler to obtain a DTMC which simulates
the die outcomes using a fair coin. Given a fixed state space, we experiment with
different numbers of transitions. In particular, we started from the implementa-
tion in [14] and then we added all the possible nondeterministic transitions from
the first state to all the other states (s=0), from the first and second states to all
the others (s=0,1), and from the first, second, and third states to all the others
(s=0,1,2). Each time we were able not only to satisfy the formula, but also to
obtain the witness corresponding to the scheduler satisfying the property.

Regarding the running times listed in Table 1, we note that our implementa-
tion is only prototypical and there are possibilities for numerous optimizations.
Most importantly, for purely existentially or purely universally quantified formu-
las, we could define a more efficient encoding with much less variables. However,
it is clear that the running times for even relatively small MPDs are large. This
is simply because of the high complexity of the verification of hyperproperties.
In addition, the HyperPCTL formulas in our case studies have multiple scheduler
and/or state quantifiers, making the problem significantly more difficult.

7 Conclusion and Future Work

We investigated the problem of specifying and model checking probabilistic hy-
perproperties of Markov decision processes (MDPs). Our study is motivated
by the fact that many systems have probabilistic nature and are influenced by
nondeterministic actions of their environment. We extended the temporal logic
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HyperPCTL for DTMCs [7] to the context of MDPs by allowing formulas to quan-
tify over schedulers. This additional expressive power leads to undecidability of
the HyperPCTL model checking problem on MDPs, but we also showed that the
undecidable fragment becomes decidable for non-probabilistic memoryless sched-
ulers. Indeed, all applications discussed in this paper only require this type of
schedulers.

Due to the high complexity of the problem, more efficient model checking
algorithms are greatly needed. An orthogonal solution is to design less accurate
and/or approximate algorithms such as statistical model checking that scale bet-
ter and provide certain probabilistic guarantees about the correctness of verifi-
cation. Another interesting direction is using counterexample-guided techniques
to manage the size of the state space.
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A Proof of Theorem 1

Theorem 1. HyperPCTL model checking for MDPs is in general undecidable.

Proof. We reduce the emptiness problem in probabilistic Büchi automata (PBA),
which is known to be undecidable [18], to our problem.

A.1 Probabilistic Büchi Automata

PBA can be viewed as nondeterministic Büchi automata where the nondeter-
minism is resolved by a probabilistic choice. That is, for any state q and letter
a in alphabet Σ, either q does not have any a-successor or there is a probability
distribution for the a-successors of q.

Definition 7. A probabilistic Büchi automaton (PBA) over a finite alphabet Σ
is a tuple P = (Q, δ,Σ, F ), where Q is a finite state space, δ : Q×Σ×Q→ [0, 1]
is the transition probability function, such that for all q ∈ Q and a ∈ Σ:

∑

q′∈Q

(q, a, q′) ∈ {0, 1}

and F ⊆ Q is the set of accepting states.

A run for an infinite word w = a1a2 · · · ∈ Σω is an infinite sequence π =
q0q1q2 · · · of states in Q, such that qi+1 ∈ δ(qi, ai+1) = {q′ | δ(qi, ai+1, q

′) > 0}
for all i ≥ 0. Let Inf(π) denote the set of states that are visited infinitely often
in π. Run π is called accepting if Inf(π) ∩ F 6= ∅. Given an infinite input word
w ∈ Σω, the behavior of P is given by the infinite Markov chain that is obtained
by unfolding P into a tree using w. This is similar to an induced Markov chain
from an MDP by a scheduler. Hence, standard concepts for Markov chains can
be applied to define the acceptance probability of w in P , denoted by PrP(w)
or briefly Pr(w), by the probability measure of the set of accepting runs for w
in P . We define the accepted language of P as:

L(P) = {w ∈ Σω | PrP(w) > 0}.

The emptiness problem is to decide whether or not L(P) = ∅ for a given input
P .

A.2 Mapping

Our idea of mapping the emptiness problem in PBA to HyperPCTL model check-
ing for MDPs is as follows. We map a PBA to an MDP such that the words of
the PBA are mimicked by the runs of the MDP. In other words, letters of the
words in the PBA appear as propositions on states of the MDP. This way, the
existence of a word in the language of the PBA corresponds to the existence of
a scheduler that produces a satisfying computation tree in the induced Markov
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chain of the MDP.

MDP M = (S,Act ,P,AP, L): Let P = (Q, δ,Σ, F ) be a PBA with alphabet
Σ. We obtain an MDP M = (S,Act ,P,AP, L) as follows:

– The set of states is S = Q× Σ.
– The set of actions is Act = Σ.
– The transition probability function P is defined as follows:

P
(

(q, a), b, (q′, a′)
)

=

{

δ(q, b, q′) if a′ = b

0 otherwise

– The set of atomic propositions is AP = Σ ∪ {f}, where f 6∈ Σ (we use f to
label the accepting states).

– The labeling function L is defined as follows. For each a ∈ Σ and q ∈ Q, we
have:

L(q, a) =

{

{a, f} if q ∈ F

{a} otherwise

HyperPCTL formula: The HyperPCTL formula in our mapping is the follow-
ing:

ϕmap = ∃σ̂.∃ŝ(σ̂).∀ŝ′(σ̂).

(

P
(

∧

a∈AP\{f}

(aŝ ↔ aŝ′)
)

= 1

)

∧

(

P

(

P
(

P( fŝ) = 1
)

= 1
)

> 0

)

Intuitively, the formula establishes connection between the PBA emptiness prob-
lem and HyperPCTL model checking MDPs. In particular:

– The existence of scheduler σ̂ in ϕmap corresponds to the existence of a word
w in L(P);

– the state quantifiers and the left conjunct ensure that the path in the induced
Markov chain and the PBA follow the sequence of actions (respectively,
letters) in the witness to σ̂ (respectiely, w), and

– the right conjunct mimics that a state in F is visited with non-zero proba-
bility if and only if a state labeled by proposition f is visited infinitely often
in the MDP with non-zero probability.

A.3 Reduction

We now show that L(P) 6= ∅ if and only if M |= ϕmap. We distinguish two cases:

– (⇒) Suppose we have L(P) 6= ∅. This means there exists a word w ∈ Σω,
such that PrP(w) > 0. We use w to eliminate the existential scheduler quan-
tifier and instantiate σ̂ in formula ϕmap. This induces a DTMC and now, we



Probabilistic Hyperproperties with Nondeterminism 21

show that the induced DTMC satisfies the following HyperPCTL formula as
prescribed in [7]:

∃ŝ.∀ŝ′.

(

P
(

∧

a∈AP\{f}

(aŝ ↔ aŝ′)
)

= 1

)

∧

(

P

(

P
(

P( fŝ) = 1
)

= 1
)

> 0

)

To this end, observe that the right conjunct is trivially satisfied due to the
fact that PrP(w) > 0. That is, since a state in F is visited infinitely often
with non-zero probability in P , a state labeled by f in M is also visited
infinitely often with non-zero probability. The left conjunct is also satisfied
by construction of the mapped MDP, since the sequence of letters in w
appear in all paths of the induced DTMC as propositions.

– (⇐) The reverse direction is pretty similar. Since the answer to the model
checking problem is affirmative, a witness to scheduler quantifier σ̂ exists.
This scheduler induces a DTMC whose paths follow the same sequence of
propositions. This sequence indeed provides us with the word w for P . Fi-
nally, since the right conjunct in ϕmap is satisfied by the MDP, we are guar-
anteed that w reaches an accepting state in F infinitely often with non-zero
probability.

And this concludes the proof. �

B Proof of Theorem 2

Theorem. 2 The problem to decide for MDPs the truth of HyperPCTL formulas
with a single existential (respectively, universal) scheduler quantifier over non-
probabilistic memoryless schedulers is NP-complete (respectively, coNP-complete)
in the state set size of the given MDP.

Proof. In order to show membership to NP, let M be an MDP and ϕ = ∃σ̂.ϕ′ be
a HyperPCTL formula.We show that given a solution to the problem, we can verify
the solution in polynomial time. Observe that given a non-probabilistic memo-
ryless scheduler as a witness to the existential quantifier ∃σ̂, one can compute
the induced DTMC and then verify the DTMC against the resulting HyperPCTL

formula in polynomial time in the size of the induced DTMC [7].
Inspired by the proof technique introduced in [19], for the lower bound, we

reduce the SAT problem to our model checking problem.

B.1 The Satisfiability Problem

The SAT problem is as follows:

Let {x1, x2, . . . , xn} be a set of propositional variables. Given is a Boolean
formula y = y1 ∧ y2 ∧ · · · ∧ ym, where each yj, for j ∈ [1,m], is a disjunc-
tion of at least three literals. Is y satisfiable? That is, does there exist
an assignment of truth values to x1, x2, . . . , xn, such that y evaluates to
true?
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B.2 Mapping

We now present a mapping from an arbitrary instance of SAT to the model check-
ing problem of an MDP and a HyperPCTL formula of the form ∃σ̂.∃ŝ(σ̂).∀ŝ′(σ̂).ψ.
Then, we show that the MDP satisfies this formula if and only if the answer to
the SAT problem is affirmative. Figure 6 shows an example.
MDP M = (S,Act ,P,AP, L):

– (Atomic propositions AP) We include four atomic propositions: p and p̄ to
mark the positive and negative literals in each clause and c and c̄ to mark
paths that correspond to clauses of the SAT formula. Thus,

AP =
{

p, p̄, c, c̄}.

– (Set of states S) We now identify the members of S:

• For each clause yj , where j ∈ [1,m], we include a state rj , labeled by
proposition c. We also include a state r0 labeled by c̄

• For each clause yj, where j ∈ [1,m], we introduce the following n states:

{

vji | i ∈ [1, n]
}

.

Each state vji is labeled with proposition p if xi is a literal in yj , or with
p̄ if ¬xi is a literal in yj.

• For each Boolean variable xi, where i ∈ [1, n], we include two states si
and s̄i. Each state si (respectively, s̄i) is labeled by p (respectively, p̄).

– (Set of actions Act) The set of actions is Act = {α, β, γ}. Intuitively, the
scheduler chooses action α (respectively, β) at a state si or s̄i to assign true
(respectively, false) to variable xi+1. Action γ is the sole action available at
all other states.

– (Transition probability function P) We now identify the members of P . All
transitions have probability 1, so we only discuss the actions.

• We add transitions (rj , γ, v
j
1) for each j ∈ [1,m], where from rj , the

probability of reaching vj1 is 1.
• For each i ∈ [1, n), we include four transitions (si, α, si+1), (si, β, s̄i+1),
(s̄i, α, si+1), and (s̄i, β, s̄i+1). The intuition here is that when the sched-
uler chooses action α at state si or s̄i, variable xi+1 evaluates to true
and when the scheduler chooses action β at state si or s̄i, variable xi+1

evaluates to false in the SAT instance. We also include two transitions
(r0, α, s1) and (r0, β, s̄1) with the same intended meaning.

• Finally, we include self-loops (sn, γ, sn), (s̄n, γ, s̄n), and (vjn, γ, v
j
n), for

each j ∈ [1,m].

HyperPCTL formula: The HyperPCTL formula in our mapping is the follow-
ing:

ϕmap = ∃σ̂.∃ŝ(σ̂).∀ŝ′(σ̂).c̄ŝ(σ̂) ∧

(

cŝ′(σ̂) ⇒
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}} }}

y4 =y3 =
(¬x1 ∨ x2 ∨ ¬x4) (¬x3 ∨ x4 ∨ ¬x5) (x1 ∨ x4 ∨ x5)(x1 ∨ ¬x2 ∨ x3)

{c} {c} {c} {c}

{p} {p̄}

{p̄}{p}

{p} {p̄}

{p} {p}

{p}

{}

{}

v11 v21 v31 v41

v12 v22 v32 v42

v14

v15 v25

v24

v33

v45

v43v23

v34

v13

v35

v44

s2

{p̄}

{p̄}

{p}

s1

s3

s4

s5

s̄1

s̄2

s̄3

s̄4

s̄5

β, 1

s traces s′ traces

r0 r1 r2 r3 r4

β, 1

β, 1

β, 1

β, 1

β, 1

β, 1

β, 1

β, 1

γ, 1

γ, 1γ, 1

{p̄}

{p} {p̄}

{}

{p̄}

{}

{}

{}

{p̄}

{p}

α, 1

y2 =y1 =

{p}

{}

{}

{p}

{p}

{c̄}

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1 γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

γ, 1

α, 1

α, 1

α, 1

α, 1

α, 1

α, 1

α, 1

α, 1

{p̄}

Fig. 6: Example of mapping SAT to HyperPCTL model checking.

P

(

(

(pŝ(σ̂) ∧ pŝ′(σ̂)) ∨ (p̄ŝ(σ̂) ∧ p̄ŝ′(σ̂))
)

)

= 1

)

The intended meaning of the formula is that if there exists a scheduler that
makes the formula true by choosing the α and β actions, this scheduler gives us
the assignment to the Boolean variables in the SAT instance. This is achieved
by making all clauses true, hence, the ∀ŝ′(σ̂) subformula.

B.3 Reduction

We now show that the given SAT formula is satisfiable if and only if the MDP
obtained by our mapping satisfies the HyperPCTL formula ϕmap.

(⇒) Suppose that y is satisfiable. Then, there is an assignment that makes each
clause yj , where j ∈ [1,m], true. We now use this assignment to instantiate a
scheduler for the formula ϕmap. If xi = true, then we instantiate scheduler σ̂
such that in state si−1 or s̄i−1, it chooses action α. Likewise, if xi = false,
then we instantiate scheduler σ̂, such that in state si−1 or s̄i−1, it chooses
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action β. We now show that this scheduler instantiation evaluates formula
ϕmap to true. First observe that ŝ(σ̂) can only be instantiate with state r0
and ŝ′(σ̂) can only be instantiate with states rj , where j ∈ [1,m]. Otherwise,
the left side of the implication in ϕmap becomes false, making the formula
vacuously true. Since each yj is true, there is at least one literal in yj that
is true. If this literal is of the form xi, then we have xi = true and the path
that starts from r0 will include si, which is labeled by p. Hence, the values
of p, in both paths that start from ŝ(σ̂) and ŝ′(σ̂) are eventually equal. If
the literal in yj is of the form ¬xi, then xi = false and the path that starts
from ŝ(σ̂) will include s̄i. Again, the values of p̄ are eventually equal. Finally,
since all clauses are true, all paths that start from ŝ′(σ̂) reach a state where
the right side of the implication becomes true.

(⇐) Suppose our mapped MDP satisfies formula ϕmap. This means that there
exists a scheduler and state ŝ(σ̂) that makes the subformula ∀ŝ′(σ̂) true,
i.e., the path that starts from r0 results in making the inner PCTL formula
true for all paths that start from rj . We obtain the truth assignment to the
SAT problem as follows. If the scheduler chooses action α to state si, then
we assign xi = true. Likewise, if the scheduler chooses action β to state
s̄i, then we assign xi = false. Observe that since in no state p and p̄ are
simultaneously true and no path includes both si and s̄i, variable xi will have
only one truth value. Similar to the forward direction, it is straightforward
to see that this valuation makes every clause yj of the SAT instance true.

And this concludes the proof. �

C Proof of Theorem 3

Theorem. 3 Algorithm 1 returns a formula that is true iff its input HyperPCTL

formula is satisfied by the input MDP.

Proof. The proof is by structural induction over the formula type. The cases for
constants, atomic propositions, Boolean combinations and arithmetic expres-
sions are straightforward. The remaining cases are the probabilistic temporal
operators.

For the next-operator P( ϕ′) (line 13 in Algorithm 2), we first encode the
meaning of the operand ϕ′ (line 14); by induction assumption this encoding is
sound. Since the operand is a state formula, its value is Boolean. The proba-
bility that the operand is true after one step is the sum of the probabilities to
get to a state where the operand is true; we express this in pseudo-arithmetic
by setting for each composed state s the value of prob

s,ϕ′ to 1 if ϕ′ holds there
and to 0 otherwise. Using these pseudo-Boolean values, we express for each
composed state s = (s1, . . . , sn) and each scheduler σ = (σ1, . . . , σn) the prob-
ability that ϕ′ holds after one step by summing up for each possible successor
s
′ = (s′1, . . . , s

′
n) the probability Πn

i=1P(si, αi, s
′
i) to get there in one step times

the pseudo-Boolean value of prob
s,ϕ′ (lines 16–19).
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The semantics of unbounded until P(ϕ1 U ϕ2) is encoded in Algorithm 3.
Similarly to the next-operator, we recursively encode the truth of the Boolean-
valued operands (line 2). The remaining encoding follows for each composed
state s and each scheduler σ = (σ1, . . . , σn) the standard fixedpoint-encoding
of the probability to satisfy the until formula in the induced DTMC [20]. This
probability is 1 for all states satisfying ϕ2 and 0 for all states that do not satisfy
any of the operands (line 4). Furthermore, the probability is also 0 for all states
from which no ϕ2-states are reachable; we assure this by requiring for all positive
probabilities the existence of a finite loop-free path to a ϕ2-state using decreas-
ing sequences of the arithmetic variables ds,ϕ2 (line 8). For all other cases, the
encoding is similar to the next-operator, summing up for all possible successor
states the probabilities to get there times the probability to satisfy the until
formula along paths starting from there (line 7).

The case for unbounded until is a based on a technically rather complex case
distinction, but it is just a direct encoding the semantics of bounded until.
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