
Probabilistic Hyperproperties
with Rewards

Oyendrila Dobe1, Lukas Wilke2, Erika Ábrahám2, Ezio Bartocci3,
and Borzoo Bonakdarpour1(B)

1 Michigan State University, East Lansing, MI, USA
borzoo@msu.edu

2 RWTH Aachen University, Aachen, Germany
3 Technische Universität Wien, Vienna, Austria

Abstract. Probabilistic hyperproperties describe system properties that
are concerned with the probability relation between different system
executions. Likewise, it is desirable to relate performance metrics (e.g.,
energy, execution time, etc.) between multiple runs. This paper intro-
duces the notion of rewards to the temporal logic HyperPCTL by extend-
ing the syntax and semantics of the logic to express the accumulated
reward relation among different computations. We demonstrate the
application of the extended logic in expressing side-channel timing coun-
termeasures, efficiency in probabilistic conformance, path planning in
robotics applications, and recovery time in distributed self-stabilizing
systems. We also propose a model checking algorithm for verifying
Markov Decision Processes against HyperPCTL with rewards and report
experimental results.

Keywords: Markov models · Hyperproperties · Rewards · Model
checking · Policy

1 Introduction

Stochastic phenomena appear in many systems such as those that interact with
the physical environment (e.g., due to environmental uncertainties, thermal fluc-
tuations, random message loss, and processor failure). Traditionally, the specifi-
cation of systems that deal with uncertainties are expressed in some form of prob-
abilistic temporal logic such as PCTL and PCTL∗ [5]. These logics can express the
properties of single probabilistic computation trees. The temporal logic HyperPCTL [2]
generalizes PCTL to express probabilistic hyperproperties by allowing quantification over
multiple computation trees and expressing the probability relation among them. For

This research was partially supported by the United States NSF SaTC Award 2100989,
WWTF ICT19-018 grant ProbInG and the DFG Research and Training Group
UnRAVeL.
O. Dobe and L. Wilke—First co-authors.

c© Springer Nature Switzerland AG 2022
J. V. Deshmukh et al. (Eds.): NFM 2022, LNCS 13260, pp. 656–673, 2022.
https://doi.org/10.1007/978-3-031-06773-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06773-0_35&domain=pdf
https://doi.org/10.1007/978-3-031-06773-0_35

Probabilistic Hyperproperties with Rewards 657

s0
5

s1
6

s2
2

s3
2

s4
2

s5
1

s6
1

{init} {init}

{a}

{a}

∅ ∅

∅

0.4 0.2

0.4

0.7 0.3

1 0.8 0.2 1

1 1

(a) A DTMCR.

s0
3{h>0} s1

3 {h≤0}

s2
1

{
l=1
end

} s3
1

{
l=2
end

}

α

3
4

1
4

β
1
2

1
2

α2
3

1
3

β
1
2 1

2

τ 1τ 1

(b) An MDPR.

s0
3{h>0} s1

2 {h≤0}

s2
1

{
l=1
end

}
s3
1

{
l=2
end

}
3
4

1
4

2
3

1
3

1 1

(c) An induced DTMCR.

Fig. 1. Example Markov models.

instance, consider the Markov Decision Process (MDP) in Fig. 1b. The HyperPCTL
formula

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(
(h > 0)ŝ ∧ (h ≤ 0)ŝ′

)
⇒

(
P (l = 1)ŝ = P (l = 1)ŝ′

)

requires that the probability of reaching a state with proposition l = 1 from any pair
of states ŝ and ŝ′ labeled by h > 0 and h ≤ 0 respectively, should be equal for the
Discrete Time Markov Chain (DTMC) induced by any scheduler σ̂.

In addition to the probability relation between certain events and computations, it
is natural to analyze the average behavior of Markov models as well as the interrelation
of average behaviors in different executions. For example:

– Service-level agreements (e.g., average system response time and uptime) are gen-
erally concerned with average performance metrics of a system among a set of
executions. This is, of course, a system-wide performance requirement rather than
the property of individual executions.

– Side-channel timing leaks can potentially reveal sensitive information through exe-
cution time of a function call. The execution time can be captured as a reward
model where each instruction is associated with a cost and the probabilistic hyper-
property expresses that every pair of executions should exhibit the same expected
execution cost.

– Distributed algorithms often use randomization to break symmetry in order to
tackle impossibility results. Although one can reason about the expected perfor-
mance of a randomized distributed algorithm by the traditional reward models,
from a design perspective, it is desirable to determine and mitigate states from
where convergence to the objective of the algorithm takes much longer than oth-
ers.

These examples clearly motivate the need to somehow augment probabilistic hyper-
properties with reward constraints.

With this motivation, our first contribution in this paper is to make the connec-
tion between reward models and probabilistic hyperproperties. In the context of a
hyperproperty, analogous to the probability relation between multiple executions in
a HyperPCTL formula, a reward mechanism should be able to express the expected
reward relation along different quantified computation trees. To this end, we extend
the syntax and semantics of HyperPCTL by allowing arithmetic functions over expected
rewards and comparing them over multiple executions. For instance, for the MDP in

658 O. Dobe et al.

Fig. 1b one may express whether there exist two schedulers such that starting from
any two states, labeled with h>0 and h≤0, resp., the expected reward of reaching an
end-labeled state is the same using the following property:

∃σ̂1.∃σ̂2.∀ŝ(σ̂1).∀ŝ′(σ̂2).
(
(h>0)ŝ ∧ (h≤0)ŝ′

)
→

(
Rŝ(endŝ) = Rŝ′(endŝ′)

)

In the MDP in Fig. 1b, if we instantiate ŝ with s0, and choose the action α, we collect a
reward of (3+ 3

4
× 1+ 1

4
× 1) = 4, on reaching s2 and s3 with label end. Similarly, if we

instantiate ŝ′ with s1, and choose the action α, we collect a reward of (3+ 2
3
×1+ 1

3
×1) =

4, on reaching s2 and s3 with label end. Hence, we can prove the existence of schedulers
that satisfy the above property in the MDP in Fig. 1b. On a closer look, no matter which
action we choose at s0 and s1, the property is always satisfied. Also, if we instantiate
ŝ and ŝ′ with any other states different from s0 resp. s1, the property is vacuously
true. On the contrary, if we replace the equality of rewards with inequality then the
property is false as there are no such schedulers. Besides comparing reward values,
our HyperPCTL extension offers further expressive power to e.g. measure accumulated
rewards in an execution until an observable property, say termination, gets satisfied in
another one.

Our second contribution in this paper is an algorithm for model checking Hyper-
PCTL formulas with rewards for MDPs. Since the general verification problem is known
to be undecidable [2], we focus on memoryless non-probabilistic schedulers which yields
a decidable problem, for which we propose a model checking algorithm based on log-
ical problem encoding and SMT solving. We have implemented a prototype of our
method and analyzed it experimentally on three case studies: (1) side-channel timing
attacks, (2) probabilistic performance conformance, and (3) randomized path planning
for multi-agent robotics applications.

Organization. In Sect. 2, we present preliminary concepts. We introduce our proposed
extension of HyperPCTL with rewards in Sect. 3 and discuss its applications in Sect. 4.
We present our model checking algorithm and associated experimental results in Sects. 5
and 6, respectively. Related work is discussed in Sect. 7. Finally, we conclude in Sect. 8.

2 Preliminaries

By R (R≥0) we denote the real (non-negative real) numbers, and by N the natural
numbers including 0. For any domain D and any v = (v0, . . . , vn−1) ∈ Dn, we define
v[i] = vi for i ∈ {0, . . . , n−1}. The concepts below have been adapted from [5] and
extended to work for hyperlogics.

2.1 Discrete-time Markov Models with Rewards

When defining costs or rewards for Markov models, we can assign rewards to states or
transitions. In this work we limit to the assignment of non-negative rewards to states
and support multi-dimensional reward vectors.

Definition 1. A Discrete Time Markov Chain with (k-ary) rewards (DTMCR) is a
tuple D = (S, P,AP, L, rew) with (1) a non-empty set of states S, (2) a transition
function P : S ×S → [0, 1] ⊆ R with

∑
s′∈S P (s, s′) = 1 for all s ∈ S, (3) a finite set of

atomic propositions AP, (4) a labeling function L : S → 2AP and (5) a reward function
rew : S → R

k
≥0.

Probabilistic Hyperproperties with Rewards 659

Figure 1a shows an example DTMCR with unary rewards. Assume a DTMCR D =
(S, P,AP, L, rew). An infinite path is a sequence of states π = s0s1 . . . ∈ Sω with
P (si, si+1) > 0 for all i ∈ N. A non-empty prefix of an infinite path is a finite path
π = s0 . . . sn−1 ∈ S+ of length |π| = n ∈ N \ {0}. Let PathsD

s (fPathsD
s) be the set of

all infinite (finite) paths starting in s ∈ S. A state t ∈ S is reachable from s ∈ S if
there exists a path in fPathsD

s ending in t. A state s ∈ S is absorbing iff P (s, s) = 1.
For a finite path π ∈ fPathsD

s , we define its cylinder set CylD(π) as the set of all
infinite paths with π as a prefix. The probability of the cylinder set of π ∈ fPathsD

s

is defined as PrD
s (CylD(π))=Π

|π|−1
i=0 P (si, si+1). For sets R⊆fPathsD

s we have PrD
s (R)=∑

π∈R′ PrD
s (π), where R′ contains all finite paths from R that have no extensions in

R. These notions induce for each s ∈ S the probability space,

(
PathsD

s ,
{ ⋃

π∈R
CylD(π) | R ⊆ fPathsD

s

}
, PrD

s

)
.

Note that the cylinder sets of two finite paths starting in the same state are either
disjoint or one is contained in the other.

For a reward function rew : S → R
k
≥0 and i ∈ {0, . . . , k−1} we define rewi : S → R≥0

to assign the ith state reward rewi(s) = rew(s)[i] to all s ∈ S. The ith cumulative
reward for a finite path, π = s0s1 . . . sn−1 is defined as rewi(π) =

∑n−1
j=0 rewi(sj). Note

that non-negative rewards assure monotonic increase of cumulative rewards with path
extensions.

To argue about simultaneous runs across two DTMCRs, we define their parallel
composition.

Definition 2. Assume two DTMCRs Di = (Si, Pi,APi, Li, rewi) with ki-ary rewards,
i ∈ {1, 2}. We define the parallel composition D1×D2 = (S1×S2, P,AP1 ∪AP2, L, rew)
with (k1+k2)-ary rewards, such that for all (s1, s2), (s′

1, s
′
2) ∈ S × S:

(1) P
(
(s1, s2),(s

′
1, s

′
2)

)
= P1(s1, s

′
1)·P2(s2, s

′
2), (2) L((s1, s2)) = L1(s1)∪L2(s2) and

(3) rew((s1, s2)) = (rew1(s1), rew2(s2)).

Next, we extend the probabilistic nature of DTMCRs with non-determinism.

Definition 3. A Markov Decision Process with k-ary rewards (MDPR) is a tuple
M = (S, Act, P,AP, L, rew) with (1) a non-empty set of states S, (2) a non-empty
finite set of actions Act, (3) a transition function P : S × Act × S → [0, 1] ⊆ R

such that for each s ∈ S we have
∑

s′∈S P (s, α, s′) ∈ {0, 1}. For all α ∈ Act, there
is at least one action that can be chosen in each state, such that α ∈ Act(s) = {α ∈
Act | ∑s′∈S P (s, α, s′) = 1} and for α ∈ Act \Act(s),

∑
s′∈S P (s, α, s′) = 0, (4) a finite

set of atomic propositions AP, (5) a labeling function L : S → 2AP, and (6) a reward
function rew : S → R

k
≥0.

Figure 1b shows an example MDPR. In each state, for the next execution step,
any of the enabled actions can be chosen non-deterministically. Schedulers are used to
eliminate this non-determinism.

Definition 4. A scheduler for an MDPR M = (S, Act, P,AP, L, rew) is a tuple σ =
(Q, act, mode, init) with (1) a countable set of modes Q, (2) a function act : Q × S ×
Act → [0, 1] ⊆ R such that for every s ∈ S and q ∈ Q,

∑
α∈Act(s)

act(q, s, α) = 1 and
∑

α∈Act\Act(s)
act(q, s, α) = 0 ,

(3) a mode transition function mode : Q × S → Q and (4) init : S → Q assigning to
each state of M a starting mode.

660 O. Dobe et al.

Let ΣM be the set of all schedulers for M. A scheduler is finite-memory if Q is finite,
memoryless if |Q| = 1, and non-probabilistic if act(q, s, α) ∈ {0, 1} for all q ∈ Q, s ∈ S
and α ∈ Act.

Definition 5. Assume an MDPR M = (S, Act, P,AP, L, rew) with k-ary rewards and
a scheduler σ = (Q, act, mode, init) for M. Then M and σ induce the DTMCR with
k-ary rewards Mσ = (Sσ, P σ,AP, Lσ, rewσ), where Sσ = Q × S,

P σ((q, s), (q′, s′)) =

{∑
α∈Act(s) act(q, s, α) · P (s, α, s′) if q′ = mode(q, s)

0 if q′ �= mode(q, s) ,

with Lσ(q, s) = L(s) and rew σ(q, s) = rew(s), for all q ∈ Q and s ∈ S.

If σ is memoryless, we sometimes omit its mode and write (s) instead of (q, s). For
the MDPR in Fig. 1b and a scheduler that chooses action α in states s0, s1 and action
τ in states s2, s3, the induced DTMCR is shown in Fig. 1c.

Different executions in several models can be seen as executions in the composition
of the models. To simplify notation, in this paper we restrict ourselves to comparing
executions in the same model, leading to the notion of self-composition.

Definition 6. Assume an MDPR M = (S, Act, P,AP, L, rew) and a sequence σ =
(σ0, . . . , σn−1) ∈ (ΣM)n of schedulers for M. For i ∈ {0, . . . , n−1}, let Mi =
(S, Act, P,APi, Li, rew) with APi = {ai | a ∈ AP}, and Li : S → 2APi with Li(s) =
{ai | a ∈ L(s)}. We define the n-ary self composition of M under σ as the DTMCR
Mσ = (Sσ , P σ ,APσ , Lσ , rewσ) = Mσ0

0 × . . . × Mσn−1
n−1 .

In the above definition, Mσi
i is the DTMCR induced by Mi and σi. Note that the

reward of a state s = ((q0, s0), . . . , (qn−1, sn−1)) ∈ Sσ in the n-ary self-composition
Mσ is the sequence rewσ (s) = (rew(s0), . . . , rew(sn−1)), i.e. the ith state reward in
the jth execution is rewσ

j,i(s) = rewi(sj). For a finite path π in Mσ , we denote its

cumulative ith reward in the jth execution as rewj,i(π) =
∑|π|−1

k=0 rewj,i(π[k]).

3 HyperPCTL with Rewards

3.1 HyperPCTL Syntax

ϕq ::= ∀σ̂.ϕq | ∃σ̂.ϕq | ϕsq

ϕsq ::= ∀ŝ(σ̂).ϕsq | ∃ŝ(σ̂).ϕsq | ϕnq

ϕnq ::= true | aŝ | ϕnq ∧ ϕnq | ¬ϕnq | ϕar ∼ ϕar

ϕar ::= P(ϕpath) | Rŝ,i(ϕpath) | f(ϕar, . . . , ϕar)
ϕpath ::= ϕnq | ϕnq U ϕnq | ϕnq U [k1,k2] ϕnq

Fig. 2. HyperPCTL syntax

Hyperproperties of execu-
tions in an MDPR can
be specified using the logic
HyperPCTL. As shown in
Fig. 2, a quantified formula
ϕq starts with a sequence
of quantifiers over sched-
uler variables σ̂ ∈ Σ̂, fixing
the schedulers under which executions are considered. Inside, a state-quantified formula
ϕsq defines a sequence of quantifiers over state variables ŝ ∈ Ŝ, where each quantifier
specifies a new execution from a given state under a given scheduler. Note that different
executions might use the same scheduler.

Probabilistic Hyperproperties with Rewards 661

In the scope of these quantifiers is a non-quantified state formula ϕnq, which can be
the constant true, an atomic proposition indexed with a state variable, a conjunction,
a negation, or a relational constraint comparing two arithmetic expressions via ∼∈ {>
, ≥, =, �=, <, ≤}. Arithmetic expressions are constructed from probability expressions,
reward expressions or applying arithmetic function symbols (e.g., addition, subtraction,
multiplication, etc., where constants are 0-ary functions) to arithmetic expressions.
Note that the reward operator R is indexed with a state variable ŝ specifying the
execution for which we consider the reward, and an integer i specifying the reward
component; for models with unary rewards, like in our examples, we skip the second
index (as it is always 0). Finally, the parameters of probabilistic and reward expressions
are path formulas, which apply one of the temporal operators, next (), unbounded
until (U), or bounded until (U [k1,k2], k1 ≤ k2 ∈ N≥0) to non-quantified state formulas.

A HyperPCTL formula is a quantified formula in that every occurrence of an indexed
atomic proposition aŝ is in the scope of a state quantifier for ŝ(σ̂), which in turn is in
the scope of a scheduler quantifier for σ̂. W.l.o.g., in the following we assume that each
scheduler or state variable is quantified at most once.

In addition to standard syntactic sugar ∨, →, , , . . ., we can express expected
cumulative reward over the next t ∈ N steps and expected reward in the state reached
after t steps as follows:

Rŝ,i(Ct) = Rŝ,i(trueU [t,t]
true) and Rŝ,i(It) =

{Rŝ,i(Ct) − Rŝ,i(Ct−1) if t>0
Rŝ,i(Ct) else .

3.2 HyperPCTL Semantics

HyperPCTL formulas are evaluated recursively in the context of an MDPR M, a
sequence σ of actions and a sequence s of states, both of the same length. Intuitively,
the length of these sequences says how many executions we run in parallel, and the
ith elements in these sequences specify the ith execution of the scheduler and the ini-
tial state in the induced DTMCR, respectively. An MDPR M satisfies a HyperPCTL
formula ϕ (written M |= ϕ) iff M, (), () |= ϕ.

In the semantic rules below, the substitution ϕ[σ̂�σ] remembers the instantiation
of a scheduler variable σ̂ by a scheduler σ = (Q, act, mode, init) through syntactically
transforming in ϕ each ∀ŝ(σ̂) and ∃ŝ(σ̂) into ∀ŝ(σ) and ∃ŝ(σ), resp. When instantiating
the nth state quantifier ∀ŝ(σ) or ∃ŝ(σ) by a state s, we “start” an nth execution in
state (init(s), s) of Mσ, which corresponds to extending the previously (n−1)-ary self-
composition of M to arity n. We remember this by adding σ and s at the end of
the corresponding sequences in the context (using concatenation ◦), and applying the
substitution ϕ[ŝ�n] to replace each indexed atomic proposition aŝ and each reward
operator Rŝ,i in ϕ by an and Rn,i, respectively.1 We recall from [2] the semantics of
constructs that are not related to rewards:

1 Instead of syntactical substitutions, we could also use binding functions to map
scheduler variables to schedulers and state variables to indices in the state sequence
in the context.

662 O. Dobe et al.

M, σ, s |= ∀σ̂.ϕ iff M, σ, s |= ϕ[σ̂�σ] for all σ ∈ ΣM

M, σ, s |= ∃σ̂.ϕ iff M, σ, s |= ϕ[σ̂�σ] for some σ ∈ ΣM

M, σ, s |= ∀ŝ(σ).ϕ iff M, σ ◦ σ, s ◦ (init(s), s) |= ϕ[ŝ�|σ|] for all s∈S
M, σ, s |= ∃ŝ(σ).ϕ iff M, σ ◦ σ, s ◦ (init(s), s) |= ϕ[ŝ�|σ|] for some s∈S
M, σ, s |= true

M, σ, s |= ai iff ai ∈ Lσ (s)
M, σ, s |= ϕ1 ∧ ϕ2 iff M, σ, s |= ϕ1 and M, σ, s |= ϕ2

M, σ, s |= ¬ϕ iff M, σ, s �|= ϕ
M, σ, s |= ϕar

1 ∼ ϕar
2 iff �ϕar

1 �M,σ ,s ∼ �ϕar
2 �M,σ ,s

�P(ϕpath)�M,σ ,s = PrMσ ({π ∈ PathsMσ

s | M, σ, π |= ϕpath}
)

�f(ϕar
1 , . . . , ϕar

k)�M,σ ,s = f
(
�ϕar

1 �M,σ ,s , . . . , �ϕar
k �M,σ ,s

)

We are left with the semantics for Rj,i(ϕ
path) (note that instantiating a state quan-

tifier for ŝ(σ) replaces each Rŝ,i occurrence by Rj,i, where j is the position of the
quantifier). The value of Rj,i(ϕnq) is the current ith reward plus the expected ith
reward of the successor state in the jth execution, if the probability that the successor
state satisfies ϕnq is 1; otherwise, the value is undefined. The value of Rj,i(ϕ

nq
1 U ϕnq

2)
is the expected cumulative ith reward in the jth execution, accumulated until the first
time a (global self-composition) state is reached that satisfies ϕnq

2 , in case the prob-
ability of satisfying ϕnq

1 U ϕnq
2 is 1; otherwise, the value is undefined. The semantics

of Rj,i(ϕ
nq
1 U [k1,k2] ϕnq

2) is similar, but the rewards are accumulated until the first
satisfaction of ϕnq

2 within time [k1, k2]. Formally, the semantics for �Rj,i(ϕ
path)�M,σ ,s

is as follows, given that �P(ϕpath)�M,σ ,s = 1. If that is not the case, �Rj,i(ϕ
path)�M,σ ,s

is undefined.

fPathsMσ

s (ϕnq
1 U ϕnq

2) = {s0 . . . sn ∈ fPathsMσ

s | M, σ, sn |= ϕnq
2 and

M, σ, si |= ϕnq
1 ∧ ¬ϕnq

2 for i = 0, . . . , n−1}
fPathsMσ

s (ϕnq
1 U [k1,k2]ϕnq

2) = {s0 . . . sn ∈ fPathsMσ

s | k1 ≤ n ≤ k2 and
M, σ, sn |= ϕnq

2 and
M, σ, si |= ϕnq

1 for i = 0, . . . , k1−1 and
M, σ, si |= ϕnq

1 ∧ ¬ϕnq
2 for i = k1, . . . , n−1}

�Rj,i(ϕnq)�M,σ ,s = rewσ
j,i(s) +

∑
s′∈Sσ P σ (s, s′) · rewσ

j,i(s
′)

�Rj,i(ϕ
nq
1 U ϕnq

2)�M,σ ,s =
∑

π∈fPathsMσ
s (ϕ

nq
1 U ϕ

nq
2)(Prσ (π) · rewσ

j,i(π))

�Rj,i(ϕ
nq
1 U [k1,k2]ϕnq

2)�M,σ ,s =
∑

π∈fPathsMσ
s (ϕ

nq
1 U [k1,k2]ϕ

nq
2)(Prσ (π) · rewσ

j,i(π))

Since adding rewards to HyperPCTL causes arithmetic values to be potentially
undefined, we need to extend the above semantics to handle the propagation of unde-
fined values. For each syntactic case, the above semantics remains unchanged if all
involved statements used in the definition are defined. It would be an easy job to set
the values in all other cases to undefined. However, even if some of the arguments are
undefined, we still might be able to conclude a defined value. For example, if one of the
operands in a conjunction is false then the conjunction is inevitably false, even if the
other operand is undefined. In extension to the above semantics for the cases when all
terms used in the definition are defined, below we fix the semantics for the remaining
cases with the objective to reduce the occurrence of undefined values.

We extend the Boolean domain of true (1) and false (0) with undefined (⊥). We
use the |= relation as before when all sub-expressions (and thus the formula) are known
to be defined, and use �·�· otherwise. Logical constants as well as atomic propositions
are always defined. The value of a conjunction is undefined iff none of the operands is
false and not both operands are true, whereas a negation is undefined iff the negated
formula is undefined.

Probabilistic Hyperproperties with Rewards 663

The value of a universally state-quantified formula ∀ŝ(σ).ϕ is undefined if the value
of ϕ is undefined for at least one instantiation of the formula with a state and is not
false for any other instantiation. Likewise, the value of an existentially state-quantified
formula ∃ŝ(σ).ϕ is undefined if the value of ϕ is undefined for at least one instantiation
of the formula with a state and is not true for any other instantiation. The undefinedness
of scheduler quantifiers is analogous.

Row �ϕ1� �ϕ2� p �ϕ�

1 * 1 * 1

2 0 0 * 0

3 ⊥ 0 0 0

4 ⊥ 0 �= 0 ⊥
5 1 0 * p

6 0 ⊥ * ⊥
7 ⊥ ⊥ * ⊥
8 1 ⊥ 1 1

9 1 ⊥ �= 1 ⊥

Table 1. Semantics
of ϕ = P(ϕ1 U ϕ2),
partly depending on
p =

∑
s′∈Sσ P (s, s′) ·

�ϕ�M,σ ,s′ ∈ [0, 1]∪
{⊥}. Here, �.� is short for
�.�M,σ ,s .

Also the domain of arithmetic values gets extended
with the undefined value ⊥. Arithmetic function applica-
tions f(ϕ1, . . . , ϕk) and arithmetic constraints ϕ1 ∼ ϕ2 are
undefined iff any of their parameters are undefined. How-
ever, for probabilistic until ϕ = P(ϕ1 U ϕ2) we can exploit
available information to increase the number of defined
cases, even if the satisfaction of one of the operands is
undefined in the current state, as shown in Table 1. The
information we exploit for the semantics in a state s are the
probabilistic until values in the successor states, or more
precisely, the value of p =

∑
s′∈Sσ P (s, s′) · �ϕ�M,σ ,s′ ∈

[0, 1] ∪ {⊥}, which we consider undefined iff one of the
successor probabilities is undefined.

Table 1 extends the original probabilistic until seman-
tics from above with the undefined cases, using ∗ to denote
an arbitrary (defined or undefined) arithmetic value. This
table is split into three parts. The first part states that if
ϕ2 is true then the formula value is 1. The second part
covers the case where ϕ2 is false, where the violation of ϕ1

leads to the violation of the formula, and if ϕ1 is true then
the formula probability equals the value of p. An interesting case in the second block is
when ϕ1 is undefined: though in most cases the formula is also undefined, if we know
that the probability to satisfy the until formula in the future is 0 then we can safely
state that the probability to satisfy the same in the current state is also 0. Similarly
in the third block, if ϕ1 is true in the current state and the probability to satisfy the
until formula in the future is 1 then, irrelevant of the value of ϕ2, the probability to
satisfy the until formula from the current state is always 1.

Reward expressions are undefined if the respective path property is not satisfied
with probability 1. For the reward expression Rj,i(ϕ), this is the only case in which
it is undefined. To evaluate ϕ = Rj,i(ϕ1 U ϕ2), if ϕ2 is true in the current state then
we need to know only the current state’s reward; in this case the reward is defined
independent of the successor states. If ϕ2 is false currently then the reward is computed
from the current state reward plus the expected successor ϕ-values, thus undefinedness
of the reward expression in a successor state causes undefinedness in the current state.
However, if ϕ2 is undefined in the current state then we do not know which of these
two cases apply; the only case where this does not matter is if the reward expression
evaluates in all successor states to 0, namely then the value of ϕ is the current state
reward. Thus if ϕ2 is undefined in the current state then the reward expression is
undefined in all but this special case, even if the probability of the until formula is 1.

The definedness of bounded until formulas is similar to the unbounded case for
both probability and reward expressions, except that we now also need to account for
the bounds.

However, with these definitions, we only exploit some but not all information, to
determine the definedness of a property. Assume, for example, the property that from

664 O. Dobe et al.

a state s, the probability to eventually satisfy ϕ is less than p. It might be the case
that in some states reachable from s the value of ϕ is undefined, triggering the above
probability to be undefined by our algorithm. However, ϕ might be reachable along
another path with a probability larger than p, in which case we could have safely stated
that it is at least p. Hence, it can be a direction of future research to find a tighter
bound on the definedness of a property.

4 Applications of HyperPCTL with Rewards

4.1 Timing Attacks

1 void mexp () {
2 c = 0 ; d = 1 ; i = k ;
3 whi le (i >= 0){
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f (b (i) = 1){
7 c = c+1;
8 d = (d∗a) % n ;
9 }

10 }
11 }

Side-channel timing leaks can potentially reveal sen-
sitive information. For example, RSA uses the modu-
lar exponentiation algorithm on the right to compute
ab mod n, where a is the message and b is the encryp-
tion key. This implementation is flawed because of
the if in line 6. Due to the lack of an else branch, its
execution will take longer if b contains more 1-bits.
An attacker could therefore run a thread in parallel
to measure the execution time of the algorithm to
derive the number of 1-bits in the encryption key.
To prevent such vulnerabilities, we would like the execution time to be independent of
the bit values in the encryption key, which is captured by assigning a reward of 1 to
each state in the MDPR. Here, each state represents the current position in the code
and loop iteration. This results in the following HyperPCTL formula:

∀σ̂1.∀σ̂2.∀ŝ(σ̂1).∀ŝ′(σ̂2). (initŝ ∧ initŝ′) → (Rŝ(endŝ) = Rŝ′(endŝ′)) .

4.2 Probabilistic Conformance

The aim here is to ensure that an implementation conforms with the system it is sim-
ulating [2]. We consider the implementation of a 6-sided die with repeated tossing of
a fair coin using the Knuth-Yao algorithm [22]. For conformance, the probabilistic dis-
tribution of reaching the 6 sides of a die should be equal in both cases. We model this
problem with an MDP consisting of two components: the first component describes
the die and its states represent the faces of the die after being rolled. The second
component describes the multiple coin tosses and its states represent the unique com-
bined results of the tosses. Extending this model with rewards allows us to synthesize
efficient implementations: if we assign to every state, except the absorbing states, a
reward of 1, the expected reward on reaching one of the absorbing states in the coin
implementation will be equal to the expected number of coin tosses in it. If we limit
the rewards collected in such a path, we can filter the implementations with minimum
intermediate states. The following formula specifies that the expected number of coin
tosses in such an implementation must be less than 4:

∃σ̂.∀ŝ(σ̂).∃ŝ′(σ̂).dieInitŝ →
(

ϕ ∧ Rŝ′((
6∨

l=1

(die = l)ŝ′)) < 4

)

with ϕ = coinInitŝ′ ∧ ∧6
l=1 (P((die = l)ŝ) = P((die = l)ŝ′)).

Probabilistic Hyperproperties with Rewards 665

4.3 Cost Analysis in Multi-Agent Path Planning

Fig. 3. The maze on the left satisfies ϕtarget, while
on the right it violates ϕtarget.

We consider the examples
in Fig. 3 where two robots
R1, R2 aim to reach the tar-
get cell end starting their jour-
ney from two different ini-
tial cells (start1, start2). The
robots’ behavior is modeled
as an MDPR where each cell
occupied represents a state.
Nondeterministic actions rep-
resent all possible moves of the robot from each cell, while the successful maneuvering
after having executed an action is captured by a probability distribution.

Fences prevent a robot to move in a certain direction disabling possible actions in
a particular cell, while the presence of ramps or uneven terrain can increase/decrease
the probability of correct robot maneuvers. The occupancy of each state has a cost
in terms of energy consumption modeled as a positive reward. We want to check that
for all possible (memoryless) schedulers, when robots R1, R2 start their mission from
their respective initial conditions and they can both reach the target state with proba-
bility 1, then the expected energy consumption for robot R1 is less than the expected
energy consumption for robot R2. This can be expressed as the following probabilistic
hyperproperty:

ϕtarget = ∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).ψ →
(
Rŝ(endŝ) < Rŝ′(endŝ′)

)
, where

ψ =
(
start1ŝ ∧ start2ŝ′ ∧ P(endŝ) = 1 ∧ P(endŝ′) = 1

)
.

4.4 Probabilistic Self-stabilizing Systems

In distributed systems, randomization is often used to break symmetry between pro-
cesses to tackle impossibility results. For instance, self-stabilizing token circulation in a
ring is impossible in a non-probabilistic setting but Herman’s algorithm [20] (see Fig. 4)
uses randomization to ensure recovery to a stable state (i.e., there is only one token
circulating) with probability one. In such an algorithm, from certain initial states, con-
vergence to a stable state may be faster than others and if faults hit those states with a
higher probability, it reduces the average convergence time significantly. Thus, design-
ers of self-stabilizing algorithms often use state encodings to tackle slow recovery [11].
The following formula intends to check whether there exists a state from which the
convergence time is twice slower than from some other state:

∀σ̂.∃ŝ(σ̂).∃ŝ′(σ̂).
(
Rŝ(stableŝ) > 2 · Rŝ′(stableŝ′)

)

Note that Herman’s algorithm yields a DTMCR and, thus, the choice of scheduler
quantification is irrelevant.

666 O. Dobe et al.

1: Variable: xi : boolean ∈ {0, 1}
2: Guarded Commands:

xi = xi−1 −→ p : xi := 0 + (1 − p) : xi := 1;
xi �= xi−1 −→ 1 : xi := xi−1;

π0

x0=0

π1

x1=0
π2

x2=0

=⇒

π0

x0=0

π1

x1=1
π2

x2=1

Fig. 4. Herman’s algorithm [20] for process i and example for three processes.

5 Model Checking Algorithm for Reward Operators

HyperPCTL provides an increased level of expressiveness over PCTL and PCTL∗, causing
the model checking problem for MDPRs to be undecidable even without rewards, as
shown in [2]. To achieve decidability for HyperPCTL without rewards, in [2] we restricted
the domain of scheduler quantification to memoryless non-probabilistic schedulers. For
this restricted domain, the model checking problem is NP-complete (or coNP-complete)
when the scheduler quantification is existential (or universal). We provided a model
checking algorithm by logically encoding HyperPCTL satisfaction problems as linear
real-arithmetic formulas and use an SMT solver to check the encodings for satisfiability.
Elaborate explanations of encoding non-reward operators can be found in [2].

After adding rewards, the model checking problem restricted to finite memoryless
schedulers is still decidable. Similar to the standard model checking problem for Markov
Reward Models, computing the expected reward earned until a certain set of states is
reached, has a polynomial time complexity in the size of the MDP: the problem can
be solved by determining a linear real-arithmetic equation system via graph reacha-
bility analysis and solving it. This means adding rewards does not change the class of
complexity of the model checking problem as identified in [2].

However, adding rewards to the problem requires a major adaption of the logical
encoding. The reason is that expected reward values might be undefined, and undefined-
ness might propagate from the inner sub-formulas to the formula value. The main contri-
butions of this section are (1) to extend the model checking algorithm from [2] to encode
the semantics of reward-related HyperPCTL expressions and (2) to modify the previous
encodings to model undefinedness propagation for the remaining language components.
To ease understanding, in the following we consider unary-reward models and a single
existential scheduler quantifier in our properties; extension to multi-dimensional rewards
and several scheduler quantifiers without quantifier alternation is doable by little mod-
ifications to the algorithms. Given their finite domain, support for scheduler quantifier
alternation is possible, too, but it would require more involved extensions.

Algorithm 1: Main SMT encoding algorithm
Input: M = (S, Act, P,AP, L, rew): MDPR;

ϕ: HyperPCTL formula.
Output: Whether M satisfies ϕ.

1 Function
Main(M, ϕ = ∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq):

2 E :=
∧

s∈S(
∨

α∈Act(s) σs = α)

3 E := E ∧ Semantics(M, ϕnq, n)
4 T := E ∧ Eval(M, ϕ, {1})
5 U := E ∧ Eval(M, ϕ, {⊥, 1})
6 if check(T) = SAT then return TRUE
7 else if check(U) = SAT then return UNDEF
8 else return FALSE

Assume as input an MDPR
model M and a HyperPCTL for-
mula ϕ. In [2] we used Boolean
variables holdss,ϕ to encode the
truth value of a Boolean-valued
formula ϕ in state s. In this
work, we replace the two-valued
domain for these variables by
a three-valued domain over the
values true (1), false (0) and
undefined (⊥). Furthermore, we
use variables vals,ϕ to store the

Probabilistic Hyperproperties with Rewards 667

Algorithm 2: SMT encoding for the meaning of an input formula
Input: M = (S, Act, P,AP, L, rew): MDPR; ϕ: quantifier-free HyperPCTL

formula or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in n-ary self-composition of M.

1 Function Semantics(M, ϕ, n):
2 if ϕ is true then E :=

∧
s∈Sn holdss,ϕ=1

3 else if ϕ is aŝi then
4 E := (

∧
s∈Sn, a∈L(si)

(holdss,ϕ=1)) ∧ (
∧

s∈Sn, a�∈L(si)
(holdss,ϕ=0))

5 else if ϕ is ¬ϕ′ then
6 E := Semantics(M, ϕ′, n) ∧ ∧

s∈Sn(holdss,ϕ′=0 → holdss,ϕ=1)∧
7

∧
s∈Sn(holdss,ϕ′=1 → holdss,ϕ=0) ∧ ∧

s∈Sn(holdss,ϕ′=⊥ → holdss,ϕ=⊥)

8 else if ϕ is ϕ1 ∧ ϕ2 then E := SemanticsConjunction(M, ϕ, n)
9 else if ϕ is ϕar

1 ∼ ϕar
2 then E := SemanticsComp(M, ϕ, n)

10 else if ϕ is f(ϕar
1 , . . . , ϕar

k) then E := SemanticsArithmetic(M, ϕ, n)
11 else if ϕ is P(ϕ′) then E := SemanticsNext(M, ϕ, n)
12 else if ϕ is P(ϕ1 U ϕ2) then E := SemanticsUnboundedUntil(M, ϕ, n)

13 else if ϕ is P(ϕ1 U [k1,k2]ϕ2) then E := SemanticsBoundedUntil(M, ϕ, n)
14 else E := RewSemantics(M, ϕ, n)
15 return E

numerical value of an arithmetic expression ϕ in state s. To also encode the definedness
of arithmetic values, we introduce additional Boolean variables defs,ϕ which should be
true iff the corresponding value is defined. Finally, to encode a scheduler, we use for
each state of M a variable σs to store the chosen action.

The starting point of the encoding is Algorithm 1, which begins by encoding the
scheduler choice2 in line 2. The semantics of the non-quantified inner formula ϕnq

under a given scheduler choice in each of the states is encoded in line 3. This basic
encoding E is extended in two directions: formula T encodes that ϕ can be made
true by some suitable quantifier instantiation, whereas U encodes that ϕ can be made
true or undefined. Only if none of these two cases apply (i.e. if both formulas are
unsatisfiable), we conclude that M does not satisfy ϕ. Not listed in the algorithm is
the case of a universal scheduler quantifier, where we use negation to get an existential
formula, apply the listed algorithm, and negate the answer.

The semantics of formulas is encoded by Algorithm 2. We omit the pseudocode
of sub-algorithms that were needed also without rewards; these are similar to those
in [2] but get extended with the encoding of definedness as explained in Sect. 3.2.
Relevant for rewards is line 14, calling the method RewSemantics in Algorithm 3 to
encode the semantics of the reward operators. In the case of rewards over the next
operator ϕ = Rŝi(ϕ′), we first encode the probability P(ϕ′); ϕ is undefined if this
probability is not 1 (line 5). If the probability is defined, then the reward is the expected
reward of the successors in the ith execution (line 7).

2 For n scheduler quantifiers, we would simply need to include such a scheduler encod-
ing for each of the schedulers σ1, . . . , σn, and in the rest of the encoding, refer to the
respective schedulers σi instead of σ.

668 O. Dobe et al.

Algorithm 3: SMT encoding for the meaning of reward operators
Input: M = (S, Act, P,AP, L, rew): MDPR; ϕ: quantifier-free HyperPCTL

formula or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in n-ary self-composition of M.

1 Function RewSemantics(M, ϕ, n):
2 if ϕ is Rŝi(ϕ′) then
3 E := Semantics(M,P(ϕ′), n)
4 foreach s = (s1, . . . , sn) ∈ Sn do
5 E := E ∧ ((vals,P(ϕ′) �= 1 ∨ ¬defs,P(ϕ′)) ↔ ¬defs,ϕ)

6 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do
7 E := E ∧ ([defs,ϕ ∧ ∧n

j=1 σsj = αj] → [vals,ϕ = rew(si) +∑
s′∈supp(α1)×...×supp(αn)((

∏n
j=1 P (sj , αj , s

′
j)) · rew(s′

i))])

8 else if ϕ is Rŝi(ϕ1 U [k1,k2]ϕ2) then

9 E := SemanticsBoundedUntil(M,P(ϕ1 U [k1,k2]ϕ2), n)
10 E := E ∧ RewardBoundedUntil(M, ϕ, n)

11 else if ϕ is Rŝi(ϕ1 U ϕ2) then
12 E := SemanticsUnboundedUntil(M,P(ϕ1 U ϕ2), n)
13 E := E ∧ RewardUnboundedUntil(M, ϕ, n)

14 return E

Algorithm 4: SMT encoding for reward of unbounded until
Input: M = (S, Act, P,AP, L, rew): MDPR; ϕ: HyperPCTL unbounded until

formula of the form Rŝi(ϕ1Uϕ2); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition of M.

1 Function RewardUnboundedUntil(M, ϕ = Rŝi(ϕ1Uϕ2), n):
2 ϕ′ := P(ϕ1 U ϕ2); E := true

3 foreach s = (s1, . . . , sn) ∈ Sn do
4 E := E ∧ (holdss,ϕ2 = 1 → (vals,ϕ = rew(si) ∧ defs,ϕ))

5 E := E ∧ ((vals,ϕ′ �= 1 ∨ ¬defs,ϕ′) → ¬defs,ϕ)

6 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do
7 E := E ∧ ((vals,ϕ′ = 1 ∧ defs,ϕ′ ∧ holdss,ϕ2 �= 1 ∧ ∧n

j=1 σsj = αj) →
8 [vals,ϕ =

rew(si) +
∑

s′∈supp(α1)×...×supp(αn)((
∏n

i=1 P (sj , αj , s
′
j)) · vals′,ϕ)∧

9 (¬defs,ϕ ↔ [(
∨

s′∈supp(α1)×...×supp(αn) ¬defs′,ϕ)∨
10 (holdss,ϕ2 = ⊥ ∧ vals,ϕ �= rew(si))])])

11 return E

To encode the reward of unbounded until formulas, we first need to encode the prob-
ability of the until formula, since this probability needs to be 1 for a defined reward
value. Then we call the RewardUnboundedUntil method from Algorithm 4, which imple-
ments the semantics of the reward of unbounded until from Sect. 3.2. Undefinedness is
covered in line 5, when the probability of the unbounded until is either not defined or

Probabilistic Hyperproperties with Rewards 669

Table 2. Experimental results. VR: Verification result. TA: Timing attack. PC: Prob-
abilistic conformance. RO: Robotics example. HS: Herman’s algorithm. IJ: Israeli-
Jaflon’s algorithm. �: the result is true. ×: the result is false.

Case study VR Running time (s) #SMT formulas #sub formulas #states #transitions

Encoding Solving Total Variables

TA 1-bit key × 0.11 0.01 0.12 344 1008 8 10

16-bit key × 16.41 3.69 20.10 19244 49728 68 100

30-bit key × 143.49 44.64 188.13 62868 160160 124 184

45-bit key × 774.53 1304.98 2079.51 137448 348080 184 274

PC s = (0) � 5.03 2.03 7.06 7281 34681 20 186

s = (0,1,2) � 6.66 8.91 15.57 7281 61631 20 494

s = (0,. . .,4) � 8.82 35 43.82 7281 88581 20 802

s = (0,. . .,6) � 11.64 53.05 64.69 7281 115531 20 1110

RO 3 × 3 � 0.87 0.05 0.92 2179 7622 18 66

3 × 3 × 0.93 0.05 0.98 2179 7622 18 66

4 × 4 � 3.55 0.28 3.83 6561 21572 32 160

4 × 4 × 3.43 0.25 3.68 6561 21476 32 148

5 × 5 � 13.07 0.5 13.57 15651 48302 50 250

5 × 5 × 13.19 0.98 14.17 15651 48302 50 250

6 × 6 � 44.52 1.04 45.56 32041 96096 72 398

6 × 6 × 44.65 7.48 52.13 32041 96096 72 398

HS n = 3 � 0.1 0.01 0.11 489 4655 8 28

n = 5 � 0.95 0.13 1.08 2369 7047 32 244

IJ n = 3 � 0.08 0.01 0.09 169 698 7 21

n = 4 � 0.24 0.04 0.28 601 2194 15 56

n = 5 � 0.89 0.33 1.22 2233 7010 31 140

n = 6 � 3.93 19.39 23.32 8569 23362 63 336

not 1, and in the lines 9–10, when the probability of the unbounded until is 1, ϕ2 is not
true and either a successor reward is undefined, or ϕ2 is undefined and the successor
rewards are not zero. The method RewardBoundedUntil for reward expressions with
bounded until, not shown here, is similar to the unbounded case, but needs additional
bookkeeping about the time interval within which ϕ2 needs to be satisfied.

6 Evaluation

Algorithm 5: Encoding certain formula values
Input: M = (S, Act, P,AP, L, rew): MDPR;

ϕ: HyperPCTL formula; v⊆{0, 1,.
Output: Encoding that

M, (), () |= ∃σ̂.Q1ŝ1. . . . Qnŝn.(ϕnq ∈ v).
1 Function Eval(M, ϕ = ∃σ̂.Q1ŝ1. . . . Qnŝn.ϕnq,

v):
2 foreach i = 1, . . . , n do
3 if Qi = ∀ then Bi := ”

∧
si∈S ” else

Bi := ”
∨

si∈S ”

4 return B1 . . . Bn (holds(s1,...,sn),ϕnq ∈ v)

We have implemented a proto-
type of the presented algorithm
by extending our tool Hyper-
Prob [10] to support rewards.
The implementation has been
coded in Python using the
libraries Lark [24] for parsing the
input formula, and Stormpy [26]
for parsing the input MDPR.
The generated constraints are
then solved by the SMT solver
Z3 [25]. Our implementation
cannot handle all possible cases

670 O. Dobe et al.

of undefinedness. We currently do not calculate the extent of partial definedness of a
property in a model. We check whether the states queried in the property are reachable
with a probability of one and proceed in calculation of rewards in such cases. Hence,
we have evaluated case studies, where the reachability probabilities are always one.

The concept of rewards have eased the modeling of case studies with respect to
counting of expected steps needed to reach a state. Hence, for timing attack and prob-
abilistic conformance case studies, the number of transitions and states are less when
compared to the models used in [2]. The implementation also returns a witness/coun-
terexample whenever possible, allowing us to synthesize schedulers. Note that, though
the ensemble of schedulers in the executions (i.e. σ in the semantical context) define
a scheduler in the self-composition, not all schedulers of the self-composition can be
defined this way, posing a major difference between scheduler synthesis for PCTL and
for HyperPCTL.

For the TA case study, we have modeled the problem with {1, 16, 30, 45}-bit
encryption keys. We have verified the HyperPCTL formula described in Sect. 4.1. The
property does not hold on the given model and our implementation finds this bug.
Since our implementation can handle only one scheduler quantifier, we have added a
second copy of the model to the input MDPR such that the single scheduler can assign
different actions to the states in the two copies of the model.

For the PC case study, we have verified the property described in Sect. 4.2. We have
started with a model with all possible transitions, represented non-deterministically,
from the initial state s0. For all other states, we allowed only the transitions that will
give us a correct solution. We challenged our implementation to synthesize a scheduler
that will satisfy the required probabilities within the given reward bound. We scaled
the model by incrementally allowing all possible combination of transitions using non-
deterministic actions in each state and limited the expected coin tosses to be 4 for each
experiment. For all the cases, our implementation was successful in finding a solution,
which we verified manually as correct.

For the RO case study, we have verified the property described in Sect. 4.3. We
have scaled the model in terms of maze size and verified both positive and negative
cases of path finding. On self-stabilizing systems, we have verified several properties and
described one of them in Sect. 4.4. This property is satisfied and we have successfully
found a witness. We have reported the timing data for this property in Table 2. We have
verified the property in models representing both Herman’s (HS) and Israeli-Jaflon’s
(IJ) [21] algorithms. Since, Herman’s algorithm is only valid for odd processes, we
tried verification over {3, 5} processes. For Israeli-Jaflon’s, we tried it over {3, 4, 5, 6}
process.

The experiments have been performed in a Docker container running on a system
with 2.3 GHz i7 processor and 32 GB of RAM. Because of the incomplete implementa-
tion of handling of undefined values, which would add a significant number of additional
constraints, the reported execution times are lower than they would normally be. From
Table 2, it is clear that the execution times for even relatively small MPDRs are large.
This is because of the inherent complexity of the problem, to which reward operators
add a new dimension of complexity.

7 Related Work

The classical temporal logics for probabilistic systems [19], for example PCTL and its
extension with reward operators [17,23], cannot express probabilistic hyperproperties,

Probabilistic Hyperproperties with Rewards 671

because they can only refer to a single path at a time. There has been considerable work
to overcome this shortcoming for non-probabilistic hyperlogics in terms of automated
verification [8,14–16] and monitoring [4,6,7,12,13,18,27] of HyperLTL specifications.
However, none of these are relevant to probabilistic systems. The work in [3] over-
comes this limitation by introducing HyperPCTL, a temporal logic that can express
probabilistic hyperproperties over discrete-time Markov chains. In [1] we addressed the
problem of computing the regions of parameter configurations of discrete-time Markov
chains satisfying/violating a formula ϕ in a fragment of HyperPCTL. In [2], we enriched
the syntax and semantics of HyperPCTL with the possibility to quantify simultaneously
over schedulers and probabilistic computation trees. However, reasoning about rewards
was not supported in [2], while it is considered in this paper for the first time.

An orthogonal attempt to solve the model checking problem has been addressed
in [9], where the authors present the temporal logic PHL that allows quantification
over schedulers, but path quantification of the induced DTMC is achieved by using
HyperCTL∗. To overcome the undecidability problem of model checking with their
logics, the authors provide two approximate methods for proving and refuting only
universally quantified formulas in PHL for memoryful schedulers. However, this work
does not handle reward models as well.

Other works related to probabilistic hyperproperties comprises of approaches
based on statistical model checking (SMC) [28,29] using an extension of HyperPCTL
that allows explicit path quantification over the probability operator. However, these
approaches do not consider the use of rewards either.

8 Conclusion

In this paper, we studied probabilistic hyperproperties with rewards. To this end, we
extended the temporal hyperlogic HyperPCTL with reward operators that associates
quantified computation trees with interrelated accumulated rewards. We also proposed
an SMT-based algorithm for model checking these formulas for MDPRs. We have cre-
ated a prototypical implementation and used it to analyze a few case studies. Due
to the high complexity of the problem, more efficient model checking algorithms are
greatly needed. An orthogonal solution is to design less accurate and/or approximate
algorithms such as statistical model checking that scale better and provide certain prob-
abilistic guarantees about the correctness of verification. Another interesting direction
is using counterexample-guided techniques to manage the size of the state space.

References

1. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Parameter synthesis for
probabilistic hyperproperties. In: Proceedings of LPAR 2020: The 23rd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning.
EPiC Series in Computing, vol. 73, pp. 12–31. EasyChair (2020). https://doi.org/
10.29007/37lf

2. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Probabilistic hyperproper-
ties with nondeterminism. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS,
vol. 12302, pp. 518–534. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59152-6 29

https://doi.org/10.29007/37lf
https://doi.org/10.29007/37lf
https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-030-59152-6_29

672 O. Dobe et al.

3. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic
hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024,
pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 2

4. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties in
HyperLTL. In: Proceedings of CSF 2016: The IEEE 29th Computer Security Foun-
dations, pp. 239–252. IEEE Computer Society (2016). https://doi.org/10.1109/
CSF.2016.24

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

6. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03421-4 2

7. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free HyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 5

8. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

9. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov
decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 27

10. Dobe, O., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: HyperProb: a model
checker for probabilistic hyperproperties. In: Huisman, M., Păsăreanu, C., Zhan,
N. (eds.) FM 2021. LNCS, vol. 13047, pp. 657–666. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-90870-6 35

11. Fallahi, N., Bonakdarpour, B., Tixeuil, S.: Rigorous performance evaluation of self-
stabilization using probabilistic model checking. In: Proceedings of SRDS 2013: The
32nd IEEE International Conference on Reliable Distributed Systems, pp. 153–162.
IEEE Computer Society (2013). https://doi.org/10.1109/SRDS.2013.24

12. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

13. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Meth. Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/s10703-
019-00334-z

14. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

15. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security policies in
multi-agent workflows with loops. In: Proceedings of CCS 2017: The 15th ACM
Conference on Computer and Communications Security (CCS). ACM (2017).
https://doi.org/10.1145/3133956.3134080

16. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1109/SRDS.2013.24
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3

Probabilistic Hyperproperties with Rewards 673

17. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

18. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

19. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 102–111 (1994). https://doi.org/10.1007/BF01211866

20. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990).
https://doi.org/10.1016/0020-0190(90)90107-9

21. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of PODC 1990: The Ninth Annual
ACM Symposium on Principles of Distributed Computing, pp. 119–131 (1990).
https://doi.org/10.1145/93385.93409

22. Knuth, D., Yao, A.: The complexity of nonuniform random number generation. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press
(1976)

23. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

24. LARK. https://lark-parser.readthedocs.io/
25. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of TACAS

2008, pp. 337–340 (2008)
26. STORMpy. https://moves-rwth.github.io/stormpy/
27. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of

hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

28. Wang, Y., Nalluri, S., Bonakdarpour, B., Pajic, M.: Statistical model checking
for hyperproperties. In: Proceedings of CSF 2021: The IEEE 34th Computer Secu-
rity Foundations, pp. 1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.
00009

29. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyper-
properties for cyber-physical systems. ACM Trans. Embed. Comput. Syst. 18(5s),
92:1–92:23 (2019). https://doi.org/10.1145/3358232

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/BF01211866
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1145/93385.93409
https://doi.org/10.1007/978-3-540-72522-0_6
https://lark-parser.readthedocs.io/
https://moves-rwth.github.io/stormpy/
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1109/CSF51468.2021.00009
https://doi.org/10.1109/CSF51468.2021.00009
https://doi.org/10.1145/3358232

	Probabilistic Hyperproperties with Rewards
	1 Introduction
	2 Preliminaries
	2.1 Discrete-time Markov Models with Rewards

	3 HyperPCTL with Rewards
	3.1 HyperPCTL Syntax
	3.2 HyperPCTL Semantics

	4 Applications of HyperPCTL with Rewards
	4.1 Timing Attacks
	4.2 Probabilistic Conformance
	4.3 Cost Analysis in Multi-Agent Path Planning
	4.4 Probabilistic Self-stabilizing Systems

	5 Model Checking Algorithm for Reward Operators
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

