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Abstract. Probabilistic hyperproperties express probabilistic relations
between different executions of systems with uncertain behavior. Hyper-
PCTL [3] allows to formalize such properties, where quantification over
probabilistic schedulers resolves potential non-determinism. In this pa-
per we propose an extension named AHyperPCTL to additionally intro-
duce asynchronicity between the observed executions by quantifying over
stutter-schedulers, which may randomly decide to delay scheduler deci-
sions by idling. To our knowledge, this is the first asynchronous extension
of a probabilistic branching-time hyperlogic.We show that AHyperPCTL
can express interesting information-flow security policies, and propose a
model checking algorithm for a decidable fragment.

1 Introduction

Consider the following simple multi-threaded program [29] consisting of two
threads with a secret input h and a public output l:

th : while h > 0 do {h← h− 1}; l← 2 ∥ th′ : l← 1

Assuming that this program is executed under a probabilistic scheduler, the
probability of observing l = 1 decreases for increasing initial values of h. Hence,
this program does not satisfy scheduler-specific probabilistic observational deter-
minism (SSPOD) [27], which requires that no information about the private data
is leaked through the publicly visible data, for any scheduling of the threads. In
fact, the scheduler is creating a probabilistic side channel that leaks the value
of the secret. Probabilistic hyperlogics such as HyperPCTL [2, 3,20] and PHL [17]
are able to express and verify requirements such as SSPOD.

Interestingly, there is a way to mitigate this side channel similar to the
padding mechanism that counters timing side channels. In the above example,
for any two executions of the program under the same scheduler with different
initial h, we can find stuttering variations of the program such that the prob-
ability of reaching any specific final value of l is the same for both executions.
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For example, for two different values of h, say h1 and h2, where h1 < h2, letting
thread th′ initially stutter (h2 − h1) times (i.e., repeating the current state) in
the execution starting with h1 will equalize the probability of reaching l = 1.

While there have been efforts to incorporate stuttering semantics in non-
probabilistic logics (e.g., A-HLTL [8]), in the probabilistic setting, neither Hyper-
PCTL nor PHL allow reasoning about stuttering behaviors, i.e., their semantics
are “synchronous” in the sense that all computation trees are evaluated in lock-
step. In this paper, we propose an asynchronous extension of HyperPCTL that
allows to reason about stuttering computations and whether we can find stutter-
ing variations of programs such that a probabilistic hyperproperty is satisfied.

Related Work HyperPCTL [3] was the first logic for specifying probabilistic hy-
perproperties over DTMCs, by providing state-based quantifiers over the com-
putation trees of the DTMC. This logic was further extended [1, 2, 18–20] with
the possibility to specify quantifiers over schedulers for model checking Markov
decision processes (MDPs). The probabilistic hyperlogic PHL [17] can also han-
dle analysis of MDPs. In general, the (exact) model checking problem for both
HyperPCTL and PHL is undecidable unless we restrict the class of schedulers or we
rely on some approximating methods. HyperPCTL* [30,31] extends PCTL* [5]
with quantifiers over execution paths and is employed in statistical model check-
ing. All three logics are synchronous and lock-step. To the best of our knowledge,
our work is the first to consider asynchronicity in the probabilistic setting.

In the non-probabilistic setting, asynchronicity has already been studied [7,9,
10,12,13,23]. In [7], the authors study the expressivity of HyperLTL [15] showing
the impossibility to express the “two-state local independence” asynchronous
hyperproperty, where information flow is allowed only after a change of state
(for example in the case of declassification [28]). To cope with this limitation,
several asynchronous extensions of HyperLTL have been proposed.

For example, Asynchronous HyperLTL [10] extends HyperLTL with quan-
tification over “trajectories” that enable the alignment of execution traces from
different runs. Stuttering HyperLTL [12] relates only stuttering traces where two
consecutive observations are different. Context HyperLTL [12] instead allows to
combine synchronous and asynchronous hyperproperties. All three logics are in
general undecidable, but there are useful decidable fragments that can be model-
checked. The expressiveness of these logics has been compared in [13].

Contributions Our main contribution is a new logic, called AHyperPCTL, which
is an asynchronous extension of HyperPCTL and allows to reason about prob-
abilistic relations between stuttering variations of probabilistic and potentially
non-deterministic systems. To our knowledge, this is the first asynchronous ex-
tension of a probabilistic branching-time hyperlogic. Our goal is to associate
several executions with independent stuttering variations of the same program
and compare them. We implement this by extending HyperPCTL with quantifi-
cation over stutter-schedulers, which specify when the program should stutter.

We show that AHyperPCTL is useful to express whether information leaks can
be avoided via suitable stuttering. In the context of our introductory example,
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the following AHyperPCTL formula expresses SSPOD under stuttering:

∀σ̂. ∀ŝ(σ̂). ∀ŝ′(σ̂). ∃τ̂(ŝ). ∃τ̂ ′(ŝ′).
(hτ̂ ̸=hτ̂ ′ ∧ initτ̂ ∧ initτ̂ ′)⇒ (

∧
k∈{1,2} P

(
(l=k)τ̂

)
= P

(
(l=k)τ̂ ′

)
),

where σ̂ represents a probabilistic scheduler that specifies which thread is allowed
to execute in which program state, ŝ and ŝ′ represent initial states, and τ̂ and τ̂ ′

are stutter-scheduler variables for the computation trees rooted at ŝ and ŝ′ under
the scheduler σ̂. This formula specifies that under any probabilistic scheduling σ̂
of the two threads, if we consider two computation trees starting in states ŝ and
ŝ′ with different values for the secret variable h, there should exist stutterings
for the two experiments such that the probabilities of observing any specific final
value of l are the same for both.

We propose a model checking algorithm for AHyperPCTL under restrictions
on the classes of schedulers and stutter-schedulers. Our method generates a
logical encoding of the problem in real arithmetic and uses a satisfiability mod-
ulo theories (SMT) solver, namely Z3 [25], to determine the truth of the input
statement. We experimentally demonstrate that the model checking problem for
asynchronous probabilistic hyperproperties is a computationally highly complex
synthesis problem at two levels: both for synthesizing scheduler policies and for
synthesizing stutter schedulers. This poses serious problems for model checking:
our current implementation does not scale beyond a few states. We discuss some
insights about this complexity and suggest possible future directions.

Organization We discuss preliminary concepts in Sec. 2 and introduce AHyper-
PCTL in Sec. 3. We dedicate Sec. 4 to applications and Sec. 5 to our algorithm.
We discuss results of our prototype implementation in Sec. 6. We conclude in
Sec. 7 with a summary and future work.

2 Preliminaries

We denote the real (non-negative real) numbers by R (R≥0), and the natural
numbers including (excluding) 0 by N (N>0). For any n ∈ N, we define [n]
to be the set {0, . . . , n−1}. We use () to denote the empty tuple and ◦ for
concatenation.

Definition 1. A discrete-time Markov chain (DTMC) is a tuple D=(S,AP, L,P)
where (1) S is a non-empty finite set of states, (2) AP is a set of atomic propo-
sitions, (3) L : S → 2AP is a labeling function and (4) P : S × S → [0, 1] is a
transition probability function such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S.

An (infinite) path is a sequence s0s1s2 . . . ∈ Sω of states with P(si, si+1) > 0
for all i ≥ 0. Let PathsDs denote the set of all paths of D starting in s ∈ S, and
fPathsDs denote the set of all non-empty finite prefixes of paths from PathsDs ,
which we call finite paths. For a finite path π = s0 . . . sk ∈ fPathsDs0 , k ≥ 0, we
define |π| = k. A state t ∈ S is reachable from s ∈ S if there exists a finite path
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in fPathsDs that ends in t. The cylinder set CylD(π) of a finite path π is the set
of all infinite paths with π as a prefix. The probability space for D and s ∈ S is(

PathsDs ,
{⋃

π∈R CylD(π) | R ⊆ fPathsDs
}
,PrDs

)
,

where the probability of the cylinder set of π ∈ fPathsDs is PrDs (CylD(π)) =

Π
|π|
i=1P(πi−1, πi). These concepts have been discussed in detail in [5].
Markov decision processes extend DTMCs to allow the modeling of environ-

ment interaction or user input in the form of non-determinism.

Definition 2. A Markov decision process (MDP) is defined as a tuple M =
(S,AP, L,Act ,P), where (1) S is a non-empty finite set of states, (2) AP is a
set of atomic propositions, (3) L : S → 2AP is a labeling function, (4) Act is
a non-empty finite set of actions, (5) P : S × Act × S → [0, 1] is a transition
probability function such that for all s ∈ S the set of its enabled actions

Act(s) =
{
α ∈ Act |

∑
s′∈S P(s, α, s′) = 1

}
is non-empty and

∑
s′∈S P(s, α, s′) = 0 for all α ∈ Act \Act(s).

Let M be the set of all MDPs. For every execution step of an MDP, a scheduler
resolves the non-determinism by selecting an enabled action to be executed.

Definition 3. For an MDP M = (S,AP, L,Act ,P), a scheduler is a tuple σ =
(Q,mode, init , act), where (1) Q is a non-empty countable set of modes, (2)
mode : Q × S → Q is a mode transition function, (3) init : S → Q selects the
starting mode init(s) for each state of s ∈ S, and (4) act : Q× S ×Act → [0, 1]
is a function with

∑
α∈Act(s) act(q, s, α) = 1 and

∑
α∈Act\Act(s) act(q, s, α) = 0

for all s ∈ S and q ∈ Q.

We use ΣM to denote the set of all schedulers for an MDP M. A scheduler
is called finite-memory if Q is finite, memoryless if Q is a singleton, and deter-
ministic if act(q, s, α) ∈ {0, 1} for all (q, s, α) ∈ Q × S × Act . If a scheduler is
memoryless, we sometimes omit its only mode.

3 Asynchronous HyperPCTL

Probabilistic hyperproperties specify probabilistic relations between different ex-
ecutions of one or several probabilistic models. In previous work, we introduced
HyperPCTL [3] to reason over non-determinism [20] and rewards [19] for syn-
chronous executions, i.e., where all executions make their steps simultaneously.
In this work, we propose an extension to reason about asynchronous executions,
where some of the executions may also stutter (i.e., stay in the same state with-
out observable changes) while others execute.

This is useful if, for example, the duration of some computations depend
on some secret input and we thus might wish to make the respective duration
unobservable. A typical application area are multi-threaded programs, like the
one presented in Section 1, where we want to relate the executions of the different
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threads. If there is a single processor available, each execution step allows one
of the threads to execute, while the others idle. The executing thread, however,
might also decide to stutter in order to hide its execution duration. To be able to
formalize such behavior, the decision whether an execution stutters or not must
depend not only on the history but also on the chosen action (in our example,
corresponding to which of the threads may execute).

In this section, we first introduce a novel scheduler concept that supports
stuttering, followed by the extension of HyperPCTL that we henceforth refer to
as AHyperPCTL. To improve readability, we assume that all executions run in the
same MDP; an extension to different MDPs is a bit technical but straightforward.

3.1 Stutter Schedulers

We define a stutter-scheduler as an additional type of scheduler that only dis-
tinguishes between stuttering, represented by ε, or proceeding, represented by
ε, for every state s ∈ S and action α ∈ Act .

Definition 4. A stutter-scheduler for an MDP M = (S,AP, L,Act ,P) is a
tuple τ = (Qε,modeε, initε, actε) where (1) Qε is a non-empty countable set
of modes, (2) modeε : Qε × S × Act → Qε is a mode transition function, (3)
initε : S → Qε is a function selecting a starting mode init(s) for each state s ∈ S
and (4) actε : Qε × S ×Act × {ε, ε} → [0, 1] is a function with

actε(qε, s, α, ε) + actε(qε, s, α, ε) = 1

for all (qε, s, α) ∈ Qε × S ×Act .

We use TM to denote the set of all stutter-schedulers for an MDPM. When
reasoning about asynchronicity, we consider an MDP M in the context of a
scheduler and a stutter-scheduler forM. At each state, first the scheduler chooses
an action α, followed by a decision of the stutter-scheduler whether to execute
α or to stutter (i.e., stay in the current state). Thus, a stutter-scheduler makes
its decisions based on not only its mode and the MDP state, but also depending
on the action chosen by the scheduler.

Definition 5. For an MDP M = (S,AP, L,Act ,P), a scheduler σ for M and
a stutter-scheduler τ for M, the DTMC induced by σ and τ is defined as
Mσ,τ = (Sσ,τ ,AP, Lσ,τ ,Pσ,τ ), where Sσ,τ = Q×Qε×S, Lσ,τ (q, qε, s) = L(s) and

Pσ,τ ((q, qε, s), (q′, qε
′
, s′)) =


stut if q′ = q ̸= mode(q, s) ∧ s′ = s

cont if q′ = mode(q, s) ∧ (q′ ̸= q ∨ s′ ̸= s)

stut + cont if q′ = q = mode(q, s) ∧ s′ = s

0 otherwise

with stut =
∑

α∈Act,modeε(qε,s,α)=q
ε′ act(q, s, α) · actε(qε, s, α, ε)

and cont =
∑

α∈Act,modeε(qε,s,α)=q
ε′ act(q, s, α) · actε(qε, s, α, ε) ·P(s, α, s′) .
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The properties finite-memory, memoryless, and deterministic for stutter sched-
ulers are defined analogously as for schedulers. A stutter-scheduler τ for an MDP
M is fair for a scheduler σ ∈ ΣM if the probability of taking infinitely many con-
secutive stuttering steps is 0. The different executions, whose relations we want
to analyze, will be evaluated in the composition of the induced models. The
composition we use is the standard product of DTMCs with the only difference
that we annotate atomic propositions with an index, indicating the execution in
which they appear.

Definition 6. For n ∈ N and DTMCs D1, . . . ,Dn with Di = (Si,APi, Li,Pi)
for i = 1, . . . , n, we define the composition D1 × . . .×Dn to be the DTMC D =
(S,AP, L,P) with S = S1 × . . . × Sn, AP = ∪ni=1{ai | a ∈ APi}, L(s1, . . . , sn) =
∪ni=1{ai | a ∈ Li(si)} and P ((s1, . . . , sn), (s

′
1, . . . , s

′
n)) = Πn

i=1Pi(si, s
′
i).

Definition 7. For an MDP M, n ∈ N>0, a tuple σ = (σ1, . . . , σn) ∈ (ΣM)n

of schedulers, and a tuple τ = (τ1, . . . , τn) ∈ (TM)n of stutter-schedulers, we
define the induced DTMC Mσ,τ =Mσ1,τ1 × . . .×Mσn,τn .

Later we will make use of counting stutter-schedulers. These are deterministic
bounded-memory stutter-schedulers which specify for each state s ∈ S and action
α ∈ Act(s) a stuttering duration js,α. Intuitively, js,α determines how many
successive stutter-steps need to be made in state s before α can be executed.

Definition 8. An m-bounded counting stutter-scheduler for an MDP M =
(S,AP, L,Act ,P) and m ∈ N>0 is a stutter-scheduler τ = ([m],modeε, initε, actε)
such that for all s ∈ S and α ∈ Act(s) there exists js,α ∈ [m] with (1) initε(s)=0
and (2) for each j ∈ [m], if j < js,α then modeε(j, s, α)=j+1 and actε(j, s, α, ε) =
1, and otherwise (if j ≥ js,α) modeε(j, s, α) = 0 and actε(j, s, α, ε) = 1.

Example 1. Consider the MDP M from Figure 1 as well as the DTMC Mσ,τ

induced by a probabilistic memoryless scheduler σ with σ(s0, α) = p, σ(s0, β) =
1−p for some p ∈ [0, 1] and a 3-counting stutter-scheduler τ onM with js0,α = 2,
js0,β = 0. The modes q ∈ [3] of τ store how many times we have stuttered since
actually executing the last action. For each state (s, j) ofMσ,τ , first σ chooses an
action α ∈ Act(s) probabilistically, and then j is compared with the stuttering
duration js,α stipulated by τ . If we choose β in state (s0, 0), then we move to
a β-successor of s0. However, if we choose α, then we move to the state (s0, 1)
and then choose an action again. If we choose β at (s0, 1), then we move to
a β-successor of s0, but if we choose α then we move to (s0, 2). In particular,
choosing α at (s0, 0) does not mean that we stutter twice in s0. We stutter twice
only if we also choose α in (s0, 1).

3.2 Syntax

To formalize relations of different executions, we begin an AHyperPCTL formula
as in HyperPCTL [20] by first quantifying over the possible schedulers and then
over the states of the MDP in which the respective execution under the chosen
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s0 s2

s1

s3

. . .

. . .

. . .

M :

α

0.5

0.5

β 1

s0, 0

s0, 1

s3, 0

s0, 2

s2, 0

s1, 0

. . .

. . .

. . .

Mσ,τ :

p

1− p

p

1− p

0.5 · p

0.5 · p
1− p

Fig. 1: The interplay of a probabilistic memoryless scheduler σ and a counting
stutter-scheduler τ from Ex. 1. (The mode of σ is omitted.)

scheduler starts. In contrast to [20], we now additionally quantify over stutter-
schedulers in dependence on the chosen schedulers and initial states. Hence,
the non-quantified part of an AHyperPCTL formula is evaluated on the DTMC(s)
induced by not only the schedulers but also the stutter-schedulers, in accordance
with Def. 5. Formally, we inductively define AHyperPCTL scheduler-quantified
formulas as follows:

scheduler − quantified : φsch ::= ∀σ̂.φsch | ∃σ̂.φsch | φs

state − quantified : φs ::= ∀ŝ(σ̂).φs | ∃ŝ(σ̂).φs | φst

stutter − quantified : φst ::= ∀τ̂(ŝ).φst | ∃τ̂(ŝ).φst | φnq

non − quantified : φnq ::= true | aτ̂ | φnq ∧ φnq | ¬φnq | φpr ∼ φpr

probability expression : φpr ::= P(φpath) | f(φpr
1 , . . . , φpr

k )
path formula : φpath ::= φnq | φnq U φnq

where σ̂ is a scheduler variable from an infinite set Σ̂, ŝ is a state variable from
an infinite set Ŝ, τ̂ is a stutter-scheduler variable from an infinite set T̂ , a ∈ AP
is an atomic proposition, ∼∈ {≤, <,=, ̸=, >,≥}, and f : [0, 1]k → R is a k-ary
arithmetic operator over probabilities, where a constant c is viewed as a 0-ary
function. P refers to the probability operator and ‘ ’, ‘U ’ refer to the temporal
operators ‘next’ and ‘until’, respectively.

An AHyperPCTL scheduler-quantified formula φsch is well-formed if each oc-
currence of any aτ̂ for τ̂ ∈ T̂ is in the scope of a stutter quantifier for τ̂(ŝ) for some
ŝ ∈ Ŝ, any quantifier for τ̂(ŝ) is in the scope of a state quantifier for ŝ(σ̂) for some
σ̂ ∈ Σ̂, and any quantifier for ŝ(σ̂) is in the scope of a scheduler quantifier for
σ̂. AHyperPCTL formulas are well-formed AHyperPCTL scheduler-quantified for-
mulas, where we additionally allow standard syntactic sugar: false = ¬true,
φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), φ1 ⇒ φ2 = ¬(φ1 ∧ ¬φ2), φ = true U φ, and
P( φ) = 1− P( ¬φ).



8 L. Gerlach et al.

Example 2. The well-formed AHyperPCTL formula

∃σ̂. ∀ŝ(σ̂). ∀ŝ′(σ̂). ∃τ̂(ŝ). ∃τ̂ ′(ŝ′).
(
initτ̂ ∧ initτ̂ ′

)
⇒

(
P( aτ̂ ) = P( aτ̂ ′)

)
states that there exists an assignment for σ̂, such that, if we start two indepen-
dent experiments from any state assignment to ŝ and ŝ′, there exist independent
possible stutter-schedulers for the two experiments, under which the probability
of reaching a state labeled a is equal, provided the initial states of the experi-
ments are labeled init. Further examples will be provided in Sec. 4.

We restrict ourselves to quantifying first over schedulers, then over states, and
finally over stutter-schedulers. This choice is a balance between the expressivity
required in our applications and understandable syntax and semantics. Note that
different state variables can share the same scheduler, but they cannot share the
same stutter-scheduler. Further, several different quantified stutter-schedulers in
a formula are not allowed to depend on each other.

3.3 Semantics

The semantic judgement rules for AHyperPCTL closely mirror the rules for Hy-
perPCTL [2]. AHyperPCTL state formulas are evaluated in the context of an MDP
M, a sequence σ ∈ (ΣM)n of schedulers, a sequence τ ∈ (TM)n of stutter-
schedulers and a sequence s ∈ Sσ,τ ofMσ,τ -states. The length n of these tuples
corresponds to the number of stutter-schedulers in the given formula, which de-
termines how many experiments run in parallel. The elements of these tuples
are instantiations of the corresponding variables in the formula. We assume the
stutter-schedulers to be fair and the variables used to refer to each of these quan-
tifiers in the formula to be unique to avoid ambiguity. In the following, we use Q
to refer to quantifiers {∀,∃}. We recursively evaluate the formula by instantiating
the quantifier variables with concrete schedulers, states, and stutter-schedulers,
and store them in sequences σ, s, τ . We begin by initializing each of these se-
quences as empty. An MDP M = (S,AP, L,Act ,P) satisfies an AHyperPCTL
formula φ, denoted byM |= φ, iff M, (), (), () |= φ.

When instantiating a scheduler quantifier Qσ̂.φ by a scheduler σ, we syntac-
tically replace all occurrences of σ̂ in φ by σ and denote the result by φ[σ̂ ⇝ σ]4.
The instantiation of a state quantifier Qŝ(σ̂).φ works similarly but it also re-
members the respective scheduler: φ[ŝ⇝ sσ] denotes the result of syntactically
replacing all occurrences of ŝ in φ by sσ. Finally, for instantiating the nth stutter-
scheduler quantifier Qτ̂(sσ).φ, we replace all occurrences of aτ̂ by an and de-
note the result by φ[τ̂ ⇝n τ ]. The semantics judgement rules for quantified and
non-quantified state formulas, as well as probability expressions are defined as

4 Note that we substitute a syntactic element with a semantic object in order to reduce
notation; alternatively one could store respective mappings in the context.
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follows:

M,σ, s, τ |= ∀σ̂. φ iff ∀σ ∈ ΣM.M,σ, s, τ |= φ[σ̂ ⇝ σ]
M,σ, s, τ |= ∃σ̂. φ iff ∃σ ∈ ΣM.M,σ, s, τ |= φ[σ̂ ⇝ σ]
M,σ, s, τ |= ∀ŝ(σ). φ iff ∀s ∈ S.M,σ, s, τ |= φ[ŝ⇝ sσ]
M,σ, s, τ |= ∃ŝ(σ). φ iff ∃s ∈ S.M,σ, s, τ |= φ[ŝ⇝ sσ]
M,σ, s, τ |= ∀τ̂(sσ). φ iff ∀τ ∈ TM.M,σ ◦ σ, s ◦ (init(s), initε(s), s),

τ ◦ τ |= φ[τ̂ ⇝n τ ]
M,σ, s, τ |= ∃τ̂(sσ). φ iff ∃τ ∈ TM.M,σ ◦ σ, s ◦ (init(s), initε(s), s),

τ ◦ τ |= φ[τ̂ ⇝n τ ]
M,σ, s, τ |= true
M,σ, s, τ |= ai iff ai ∈ Lσ,τ (s)
M,σ, s, τ |= φ1 ∧ φ2 iff M,σ, s, τ |= φ1 and M,σ, s, τ |= φ2

M,σ, s, τ |= ¬φ iff M,σ, s, τ ̸|= φ
M,σ, s, τ |= φpr

1 < φpr
2 iff Jφpr

1 KM,σ,s,τ < Jφpr
2 KM,σ,s,τ

JP(φpath)KM,σ,s,τ = PrM
σ,τ

s ({π ∈ PathsM
σ,τ

s | M,σ, π, τ |= φpath})
Jf(φpr

1 , . . . , φpr
k )KM,σ,s,τ = f(Jφpr

1 KM,σ,s,τ , . . . , Jφpr
k KM,σ,s,τ )

where the tuples σ, s and τ are of length n−1. The semantics of path formulas is
defined as follows for a path π = s0s1 . . . ofMσ,τ with si ∈ Sσ1,τ1× . . .×Sσn,τn :

M,σ, π, τ |= φ iff M,σ, s1, τ |= φ
M,σ, π, τ |= φ1 U φ2 iff ∃j ≥ 0.

(
M,σ, sj , τ |= φ2 ∧
∀i ∈ [0, j).M,σ, si, τ |= φ1

)
Lemma 1. AHyperPCTL is strictly more expressive than HyperPCTL.

Proof (Sketch). For every MDPM and HyperPCTL formula φ, we can construct
an MDP M′ and an AHyperPCTL formula φ′ such that M |=HyperPCTL φ iff
M′ |=AHyperPCTL φ′. The MDP M′ is constructed from M by transforming
each self-loop to a two-state-loop and then adding a unique label as to each
state s. For this MDP, we define a formula trivial τ̂1,...,τ̂m that checks whether
the given stutter-schedulers are trivial by requiring that the probability of seeing
the same state label as in the current and in the next step must always be 0.
We construct φ′ by adding a universal stutter-quantifier for each state quantifier
and requiring that if these stutter-schedulers are all trivial, then the original
non-quantified formula must hold.

AHyperPCTL is thus at least as expressive as HyperPCTL, and since HyperPCTL
cannot express stutter quantification, AHyperPCTL is strictly more expressive.

Hence, since the model checking problem for HyperPCTL is already undecid-
able [3], it follows that AHyperPCTL model checking is undecidable as well.

Theorem 1. The AHyperPCTL model checking problem is undecidable.
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4 Applications of AHyperPCTL

ACDB Consider the code snippet [22] in Fig. 2, where two threads synchronize
across a critical region realized by the await semaphore command. Different
interleavings of the threads can yield different sequences of observable outputs

1 Thread T1( ) {
2 await semaphore{
3 pr in t ( ‘ a ’ ) ;
4 v = v+1;
5 pr in t ( ‘ b ’ ) ; }
6 }
7 Thread T2( ) {
8 pr in t ( ‘ c ’ ) ;
9 i f h=1{

10 await semaphore{
11 v = v+2;}}
12 pr in t ( ‘ d ’ ) ;
13 }

Fig. 2: Information leak.

(i.e., permutations of abcd). Assume this program
is executed according to a probabilistic scheduler.
Since the behavior of thread T2 depends on a secret
input h, under synchronous semantics, the program
leaks information about the secret input: the prob-
ability of observing output sequence acdb is 0 if
h = 0 and non-zero for h = 1. However, stuttering
after line 8 until b is printed would prevent an in-
formation leak. The following AHyperPCTL formula
expresses a variation of SSPOD, requiring that the
probability of observing any specific output should
be the same regardless of the value of h:

∀σ̂. ∀ŝ(σ̂). ∀ŝ′(σ̂). ∃τ̂(ŝ). ∃τ̂ ′(ŝ′).
(hτ̂ ̸=hτ̂ ′ ∧ initτ̂ ∧ initτ̂ ′)⇒

(
P
(
□
∧

a∈obs P( aτ̂ ) = P( aτ̂ ′)
)
= 1

)
Side-Channel Timing Leaks are a kind of information leak where an at-
tacker can infer the approximate value of the secret input based on the

1 void mexp ( ) {
2 c = 0 ; d = 1 ; i = k ;
3 whi le ( i >= 0) {
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f (b ( i ) = 1) {
7 c = c+1;
8 d = (d∗a ) % n ;}}
9 }

10 . . .
11 t = new Thread (mexp ( ) ) ;
12 j = 0 ; m = 2 ∗ k ;
13 whi le ( j < m & ! t . stop ) {
14 j++;}

Fig. 3: Modular exponentiation.

difference in execution time for different inputs
to the algorithm. Stuttering could hide these
differences. Consider the code snippet in Fig. 3
representing the modular exponentiation algo-
rithm, which is part of the RSA public-key en-
cryption protocol. It computes the value of ab

mod n where a (integer) is the plaintext and b

(integer) is the encryption key. In [2], we ver-
ified that we can notice the timing difference
using a synchronous logic. We formalize in AHy-
perPCTL that for any possible scheduling of the
two threads there exists possible stuttering that
prevents the timing leak:

∀σ̂. ∀ŝ(σ̂). ∀ŝ′(σ̂). ∃τ̂(ŝ).∃τ̂ ′(ŝ′).
(hτ̂ ̸=hτ̂ ′ ∧ initτ̂ ∧ initτ̂ ′)⇒ (

∧m
l=0 P( (j = l)τ̂ ) = P( (j = l)τ̂ ′))

5 Model Checking AHyperPCTL

Due to general undecidability, we propose a model checking algorithm for a
practically useful semantical fragment of AHyperPCTL: (1) we restrict scheduler
quantification to probabilistic memoryless schedulers such that the same prob-
abilistic decisions are made in states with identical enabled action sets, i.e., if
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Algorithm 1: Main SMT encoding algorithm
Input: M = (S,Act,P,AP, L): MDP; m: Memory size for the stutter-schedulers;

∃σ̂Q1ŝ1(σ̂) . . . Qlŝl(σ̂)∃τ̂1(ŝk1) . . .∃τ̂n(ŝkn).φ
nq: AHyperPCTL formula.

Output: Whether M satisfies the input formula.
1 Function Main(M,m, ∃σ̂Q1ŝ1(σ̂) . . . Qlŝl(σ̂)∃τ̂1(ŝk1) . . .∃τ̂n(ŝkn).φ

nq)
2 φsch :=

∧
∅≠A⊆Act

(∧
α∈A 0≤σA,α ≤ 1

)
∧
∑

α∈A σA,α=1 // scheduler choice
3 ∧

∧n
i=1

∧
s∈S

∧
α∈Act(s)(

∨m−1
j=0 τi,s,α = j) // stuttering choice

4 ∧
∧n

i=1

∧
(s,j)∈S×[m]

∧
α∈Act(s)

∧
(s′,j′)∈succ(s,α) φgoi,(s,j),α,(s′,j′)

5 ∧
∧n

i=1

∧
(s,j)∈S×[m]

∧
α∈Act(s)

∧
(s′,j′)∈succ(s,α) φtri,(s,j),α,(s′,j′)

6 φsem := Sem(M, n, φnq) // semantics of φnq

7 foreach i = 1, . . . , l do // encode state quantifiers
8 if Qi=∀ then Ai := “

∧
si∈S” else Ai := “

∨
si∈S”

9 φtru := A1 . . . Al

(
h((sk1

,0),...,(skn ,0)),φnq

)
// truth of input formula

10 if check(φsch ∧φsem ∧φtru) = SAT then return TRUE else return FALSE

Act(s) = Act(s′), then act(s, α) = act(s′, α) for all α ∈ Act(s), and (2) stutter
quantification ranges over m-bounded counting stutter-schedulers.

These restrictions were chosen to achieve decidability but still be expressive
enough for our applications.

For simplicity, here we describe the case for a single scheduler quantifier, but
the algorithm can be extended to an arbitrary number of scheduler quantifiers.
Additionally, we only describe the algorithm for existential scheduler and stutter
quantification. The extension to purely universal quantification is straightfor-
ward; we will discuss the handling of quantifier alternation in Sec. 6.

Our AHyperPCTL model checking method adapts the HyperPCTL algorithm [2]
with two major extensions: (1) we consider probabilistic memoryless schedulers
instead of deterministic memoryless ones and (2) we support stuttering. As-
sume in the following an MDP M = (S,Act,P,AP, L), a memory bound m for
stutter-schedulers, and an input AHyperPCTL formula φ. Our method generates
a quantifier-free real-arithmetic formula φsch ∧ φtru ∧ φsem that is satisfiable if
and only if M |= φ (under the above restrictions on the domains of schedulers
and stutter-schedulers). The main method (Alg. 1) generates this encoding.
1) In φsch (Lines 2–5) we encode the scheduler probabilities and counting stutter-
scheduler choices. We use real-valued variables σA,α to encode the probability of
choosing α in state s with Act(s) = A, and variables τi,s,α with domain [m] (m
being the stutter-scheduler memory bound) to represent the stuttering duration
for state s and action α under the ith stutter-scheduler quantifier.

For s = ((s1, j1), . . . , (sn, jn)) ∈ (S × [m])n we define Act(s) = Act(s1) ×
. . .×Act(sn). The calculation of successor states for the encoding of the temporal
operators depends on the chosen stutterings. To describe possible successors, we
use two mechanisms: (i) For each s ∈ (S × [m])n and α ∈ Act(s) we define
succ(s,α) to be the set of all s′ = ((s′1, j

′
1), . . . , (s

′
n, j

′
n)) ∈ (S × [m])n which
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Algorithm 2: SMT encoding for the meaning of the non-quantified formula
Input: M = (S,Act,P,AP, L): MDP; n: number of experiments;

φ: quantifier-free AHyperPCTL formula or expression.
Output: SMT encoding of the meaning of φ for M.

1 Function Sem(M, n, φ)
2 if φ is P(φ1 U φ2) then
3 E := Sem(M, φ1, n) ∧ Sem(M, φ2, n)
4 foreach s = ((s1, j1), . . . , (sn, jn)) ∈ (S × [m])n do
5 E := E ∧ (hs,φ2 ⇒ prs,φ=1) ∧

(
(¬hs,φ1 ∧ ¬hs,φ2) ⇒ prs,φ=0

)
6 E := E ∧

[[
hs,φ1 ∧ ¬hs,φ2

]
⇒

[
prs,φ =

∑
α∈Act(s)

∑
s′∈succ(s,α)

( n∏
i=1

σAct(si),αi
· goi,si,αi,s

′
i
· tri,si,αi,s

′
i

)
· prs′,φ ∧

[
prs,φ>0 ⇒

∨
α∈Act(s)

∨
s′∈succ(s,α)

( n∏
i=1

σAct(si),αi
· goi,si,αi,s

′
i
>0 ∧

(hs′,φ2
∨ ds,φ2>ds′,φ2

)
)]]]

7 else if . . .
8 return E

under some stutter-scheduler could be successors of s under α, i.e., such that

∀1 ≤ i ≤ n. ((ji < m− 1 ∧ si = s′i ∧ j′i = ji + 1) ∨ (P(si, αi, s
′
i) > 0 ∧ j′i = 0)) .

(ii) For each 1 ≤ i ≤ n, (s, j) ∈ (S × [m]), α ∈ Act(s), and (s′, j′) ∈ succ(s, α)
we define a pseudo-Boolean variable goi,(s,j),α,(s′,j′) as well as a real variable
tri,(s,j),α,(s′,j′) and define the formulas

φgoi,(s,j),α,(s′,j′) = (goi,(s,j),α,(s′,j′)=0 ∨ goi,(s,j),α,(s′,j′)=1) ∧
(
goi,(s,j),α,(s′,j′)=1

↔ ((j < τi,s,α ∧ j′ = j + 1) ∨ (j ≥ τi,s,α ∧ j′ = 0))
)

φtri,(s,j),α,(s′,j′) = (j′ = j + 1 ∧ tri,(s,j),α,(s′,j′) = 1) ∨
(j′ = 0 ∧ tri,(s,j),α,(s′,j′) = P(s, α, s′)) .

2) In φsem (Line 6) we encode the semantics of the quantifier-free part φnq of
the input formula by calling Alg. 2. The truth of each Boolean subformula φ′ of
φnq at state sequence s is encoded in a Boolean variable hs,φ′ . We also define
variables hInts,φ′ for the integer encoding (i.e., 0 or 1) of hs,φ′ , and real-valued
variables prs,φ′′ for values of probability expressions φ′′.
3) In φtru (Lines 7–9) we state the truth of the input formula by first encoding
the state quantifiers (Lines 7–8) and then stating the truth of the quantifier-free
part φnq under all necessary state quantifier instantiations (s1,. . .,sl), i.e., where
experiment i∈{1,. . .,n} starts in state ski

and stutter-scheduler mode 0 (Line 9).
In Algorithm 2, we recursively encode the meaning of atomic propositions

and Boolean, temporal, arithmetic and probabilistic operators. Due to space
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constraints, here we present only the encoding for the temporal operator “until”,
and refer to the extended version [21] for the full algorithm.

For the encoding of the probability P(φ1 U φ2) that φ1 U φ2 is satisfied along
the executions starting in state s ∈ (S × [m])n, the interesting case, where φ1

holds in s but φ2 does not, is in Line 6. The probability is a sum over all possible
actions and potential successor states. Each summand is a product over (i) the
probability of choosing the given action tuple, (ii) pseudo-Boolean values which
encode whether the potential successor state is indeed a successor state under
the encoded stutter-schedulers, (iii) real variables encoding the probability of
moving to the given successors under the encoded stutter-schedulers, and (iv)
the probability to satisfy the until formula from the successor state. We use real
variables ds,φ,τ to assure that finally a φ2-state will be reached on all paths
whose probabilities we accumulate.

Our SMT encoding is a Boolean combination of Boolean variables, non-linear
real constraints, and linear integer constraints. Our linear integer constraints can
be implemented as linear real constraints. The non-linear real constraints stem
from the encoding of the probabilistic schedulers, not from the encoding of the
stutter-schedulers. We check whether there exists an assignment of the variables
such that the encoding is satisfied. SMT solving for non-linear real arithmetic
without quantifier alternation has been proven to be solvable in exponential
time in the number of variables [11,24]. However, all available tools run in doubly
exponential time in the number of variables [4,16,26]. The number of variables of
our encoding is exponential in the number of stutter quantifiers, and polynomial
in the size of the formula, the number of states and actions of the model, and the
memory size for the stutter-schedulers. Hence, in practice, our implementation
is triple exponential in the size of the input. This yields an upper bound on the
complexity of model checking the considered fragment.

The size of the created encoding is exponential in the number of stutter-
schedulers and polynomial in the size of the AHyperPCTL formula, the number of
states and actions of the model and the memory-size for the stutter-schedulers.

6 Implementation and Evaluation

We implemented the model checking algorithm described in Section 5 based
on the existing implementation for HyperPCTL, using the SMT-solver Z3 [25].
We performed experiments on a PC with a 3.60GHz i7 processor and 32GB
RAM. Our implementation and case studies are available at https://github.com/
carolinager/A-HyperProb. It is important to note that checking the constructed
SMT formula is more complicated than in the case for HyperPCTL, since the SMT
formula contains non-linear real constraints due to the probabilistic schedulers,
whereas the SMT formula for HyperPCTL contains only linear real arithmetic.

We optimized our implementation by reducing the number of variables as
described in [20] based on the quantifiers relevant for the encoding of the consid-
ered subformula. However, for interesting properties like the properties presented
in Section 4, where we want to compare probabilities in different executions, we

https://github.com/carolinager/A-HyperProb
https://github.com/carolinager/A-HyperProb
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Case Running time (s) SMT Solver Model
study Enc. Solving Total result #variables #subform. #states #transitions

CE m = 2, h = (0, 1) 0.25 15.82 16.07 sat 829 341 7 9
m = 2, h = (0, 2) 0.38 DNF - - 1287 447 9 12

TL m = 2, k = 1 0.99 DNF - - 3265 821 15 23
ACDB m = 2 9.17 OOM - - 14716 1284 24 36

Table 1: Experimental results. CE: Classic example, TL: Timing leakage,
ACDB: Output information leak. DNF: did not finish, OOM: out of memory.

nevertheless have to create a variable encoding the validity of a subformula at a
state for (|S| ·m)n combinations of states for each subformula.

All example applications presented in Sec. 1 and 4 consist of universal sched-
uler and state quantification, and existential stutter quantification. However, our
implementation is restricted to existential scheduler and stutter quantification.
Allowing arbitrary quantifiers for scheduler and stutter quantification is also
possible in theory, but we found it to be infeasible in practice. For universal
quantifiers we would need to check whether the SMT encoding holds for all pos-
sible assignments of the variables encoding the schedulers and stutter-schedulers,
while for all other variables we only check for existence. This would yield an SMT
instance with quantifier alternation, which is considerably more difficult than the
current encoding with purely existential quantification [14]. Alternatively, we can
encode the semantics for each possible combination of stutter-schedulers sepa-
rately, meaning that we have to use variables hs,φ,τ encoding the truth of φ
at s under τ . This makes the number of variables exponential in the number
of stutter quantifiers and the number of states and actions of the model, and
polynomial in the size of the formula and the memory-size for stuttering. As a
result, the implementation scales very badly, even after decreasing the number
of variables via an optimization based on the relevant quantifiers. For all our
applications, creating the semantic encoding exceeded memory after 30 minutes
at the latest in this case.

Since neither option is a viable solution, for our case studies we instead
consider the presented formulas with existential instead of universal scheduler
quantification. In future work, it would be worth to explore how one could employ
quantifier elimination to generate a set of possible schedulers from one scheduler
instance satisfying the existential quantification.

The results of our case studies are presented in Table 1. Our first case study,
CE, is the classic example presented in Sec. 1. We compare executions with
different initial values h1 and h2, denoted by h = (h1, h2). For h = (0, 1), the
property can already be satisfied for the smallest non-trivial memory size m = 2.
For higher values of h2, however, the SMT solver does not finish solving after
1 hour. The second case study, TL, is the side-channel timing leak described in
Sec. 4. We found that already for encryption key length k = 1, and memory size
m = 2, the SMT solver did not finish after 1 hour even for a smaller formula,
where we restrict the conjunction to the case l = 0. Our third case study, ACDB,
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is the output information leak presented in Sec. 4. Here, the SMT solving exceeds
memory after 18 minutes, even if we check only part of the conjunction.

We see several possibilities to improve the scalability of our implementa-
tion. Firstly, we could experiment with different SMT solvers, like cvc5 [6]. Sec-
ondly, we could parallelize the construction of encodings for different stutter-
schedulers, and possibly re-use sub-encodings that are the same for multiple
stutter-schedulers. Another possibility would be to turn towards less accurate
methods, and employ Monte Carlo or statistical model checking approaches.

7 Conclusions

We proposed a new logic, called AHyperPCTL, which is, to our knowledge, the
first asynchronous probabilistic hyperlogic. AHyperPCTL extends HyperPCTL by
quantification over stutter-schedulers, which allow to specify when the execution
of a program should stutter. This allows to verify whether there exist stuttering
variants of programs that would prevent information leaks, by comparing ex-
ecutions of different stuttering variations of a program. AHyperPCTL subsumes
HyperPCTL. Therefore, the AHyperPCTL model checking problem on MDPs is,
in general, undecidable. However, we showed that the model checking is decid-
able if we restrict the quantification to probabilistic memoryless schedulers and
deterministic stutter-schedulers with bounded memory. Since our prototype im-
plementation does not scale well, future work could investigate the use of other
SMT solvers, statistical model checking, or Monte Carlo methods, as well as a
feasible extension to quantifier alternation for scheduler and stutter quantifiers.
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